OFFSET
0,4
COMMENTS
A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
EXAMPLE
The a(4) = 42 trees:
{{1}{1}{12}} {{12}{12}} {{1}{123}} {1234}
{{1}{{1}{12}}} {{1}{2}{12}} {{12}{13}} {{1}{234}}
{{1}{{2}{12}}} {{1}{1}{23}} {{12}{34}}
{{2}{{1}{12}}} {{1}{2}{13}} {{13}{24}}
{{1}{3}{12}} {{14}{23}}
{{1}{{1}{23}}} {{2}{134}}
{{1}{{2}{13}}} {{3}{124}}
{{1}{{3}{12}}} {{4}{123}}
{{2}{{1}{13}}} {{1}{2}{34}}
{{3}{{1}{12}}} {{1}{3}{24}}
{{1}{4}{23}}
{{2}{3}{14}}
{{2}{4}{13}}
{{3}{4}{12}}
{{1}{{2}{34}}}
{{1}{{3}{24}}}
{{1}{{4}{23}}}
{{2}{{1}{34}}}
{{2}{{3}{14}}}
{{2}{{4}{13}}}
{{3}{{1}{24}}}
{{3}{{2}{14}}}
{{3}{{4}{12}}}
{{4}{{1}{23}}}
{{4}{{2}{13}}}
{{4}{{3}{12}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p], {p, Select[mps[m], Length[m]>Length[#1]>1&]}], m];
Table[Sum[Length[Select[ssrtrees[s], FreeQ[#, {___, x_Integer, x_Integer, ___}]&]], {s, strnorm[n]}], {n, 0, 5}]
CROSSREFS
The generalization where leaves are multisets is A330471.
The non-singleton-reduced version is A330625.
The unlabeled version is A330626.
The case with all atoms distinct is A000311.
Strongly normal multiset partitions are A035310.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 26 2019
STATUS
approved