login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281118
a(1)=1, a(n>1) = number of tree-factorizations of n.
36
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 2, 2, 12, 1, 6, 1, 6, 2, 2, 1, 20, 2, 2, 4, 6, 1, 8, 1, 32, 2, 2, 2, 28, 1, 2, 2, 20, 1, 8, 1, 6, 6, 2, 1, 76, 2, 6, 2, 6, 1, 20, 2, 20, 2, 2, 1, 38, 1, 2, 6, 112, 2, 8, 1, 6, 2, 8, 1, 116, 1, 2, 6, 6, 2, 8, 1, 76, 12, 2, 1
OFFSET
1,4
COMMENTS
A tree-factorization of n>=2 is either (case 1) the number n or (case 2) a sequence of two or more tree-factorizations, one of each part of a weakly increasing factorization of n. These are rooted plane trees and the ordering of branches is important. For example, {{2,2},9}, {2,{2,9}}, {{2,2},{3,3}}, {6,{2,3}}, and {{2,3},6} are distinct tree-factorizations of 36, but {9,{2,2}}, {{2,9},2}, and {{3,3},{2,2}} are not.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
FORMULA
a(p^n) = A289501(n) for prime p. - Andrew Howroyd, Nov 18 2018
EXAMPLE
The a(30)=8 tree-factorizations are 30, 2*15, 2*(3*5), 3*10, 3*(2*5), 5*6, 5*(2*3), 2*3*5.
MATHEMATICA
postfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[postfacs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
treefacs[n_]:=If[n<=1, {{}}, Prepend[Join@@Function[q, Tuples[treefacs/@q]]/@DeleteCases[postfacs[n], {n}], n]];
Table[Length[treefacs[n]], {n, 2, 83}]
PROG
(PARI) seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += w[k]^e*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2017
STATUS
approved