This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111588 Crazy Dice: number of ways to design a pair of n-sided dice with positive integers on their faces, so that the sums when they are tossed occur with the same probabilities as if a pair of standard n-sided dice were tossed. 3
 1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 8, 1, 2, 2, 10, 1, 8, 1, 8, 2, 2, 1, 33, 2, 2, 4, 8, 1, 13, 1, 26, 2, 2, 2, 57, 1, 2, 2, 33, 1, 13, 1, 8, 8, 2, 1, 140, 2, 8, 2, 8, 1, 33, 2, 33, 2, 2, 1, 125, 1, 2, 8, 71, 2, 13, 1, 8, 2, 13, 1, 348, 1, 2, 8, 8, 2, 13, 1, 140, 10, 2, 1, 122, 2, 2, 2, 33, 1, 118, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS It is not required that the two dice be identical, it is not required that the entries be bounded by n and we do not ask that the entries be distinct from one another on each cube. We pretend for the purpose of this sequence that regular n-sided dice exist for all n. In other words, how many (unordered) pairs of polynomials B(x) = x^b_1 + x^b_2 + ... + x^b_n, C(x) = x^c_1 + x^c_2 + ... + x^c_n, are there with all exponents positive integers, such that B(x)*C(x) = (x+x^2+x^3+...+x^n)^2? a(n) = 1 means that the only way two n-sided dice can have the same probability distribution as two normal n-sided dice (each side numbered 1 through n) is if they are normal. a(6) = 2 corresponds to normal dice and Sicherman dice (one labeled 1,2,2,3,3,4 and the other 1,3,4,5,6,8). - Charles R Greathouse IV, Jan 19 2017 Records are: 1, 2, 4, 8, 10, 33, 57, 140, 348, 583, 956, 2036, 2393, 3050, ... and they seem to occur at positions given by A033833. - Antti Karttunen, Aug 28 2017 REFERENCES M. Gardner, "Penrose Tiles to Trapdoor Ciphers", p. 266. LINKS Antti Karttunen, Table of n, a(n) for n = 1..239 Donald J. Newman, A Problem Seminar, Springer; see Problem #88. EXAMPLE The first nontrivial example is for n=4: {1,2,2,3} and {1,3,3,5} together have the same sum probabilities as a pair of {1,2,3,4}. That is, (x + 2x^2 + x^3)(x + 2x^3 + x^5)=(x + x^2 + x^3 + x^4)^2. PROG (PARI) ok(p, e, n)=my(v=Vec(factorback(p, e))); vecmin(v)>=0 && vecsum(v)==n a(n)=if(n<4, return(1)); my(x='x, f=factor((x^n-1)/(x-1)), p=f[, 1], e=2*f[, 2]~, u=vector(#e, i, [0, e[i]]), s, t); t=vecmax(e); for(i=1, #e, if(e[i]==t, u[i][2]\=2; break)); forvec(v=u, t=e-v; if(cmp(v, t)<=0 && ok(p, v, n) && ok(p, t, n), s++)); s \\ Charles R Greathouse IV, Jan 19 2017 CROSSREFS Cf. A033833. Sequence in context: A292504 A281118 A284289 * A070972 A180229 A304576 Adjacent sequences:  A111585 A111586 A111587 * A111589 A111590 A111591 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 17 2005 EXTENSIONS Edited and extended by Matthew Conroy, Jan 16 2006 Correction to some terms, thanks to Adam Chalcraft. - Matthew Conroy, Apr 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 07:25 EST 2018. Contains 317225 sequences. (Running on oeis4.)