OFFSET
1,4
COMMENTS
A factorization of n is a finite multiset of positive integers greater than 1 with product n. An orderless tree-factorization of n is either (case 1) the number n itself or (case 2) a finite multiset of two or more orderless tree-factorizations, one of each factor in a factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..16384
Michael De Vlieger, Records and indices of records.
FORMULA
a(p^n) = A141268(n) for prime p. - Andrew Howroyd, Nov 18 2018
EXAMPLE
The a(16)=11 orderless tree-factorizations are: 16, (28), (2(24)), (2(2(22))), (2(222)), (44), (4(22)), ((22)(22)), (224), (22(22)), (2222).
MATHEMATICA
postfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[postfacs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
oltfacs[n_]:=If[n<=1, {{}}, Prepend[Union@@Function[q, Sort/@Tuples[oltfacs/@q]]/@DeleteCases[postfacs[n], {n}], n]];
Table[Length[oltfacs[n]], {n, 83}]
PROG
(PARI) seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += binomial(e+w[k]-1, e)*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2017
STATUS
approved