login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292506
Number T(n,k) of multisets of exactly k nonempty binary words with a total of n letters such that no word has a majority of 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 3, 1, 0, 4, 3, 1, 0, 11, 10, 3, 1, 0, 16, 23, 10, 3, 1, 0, 42, 59, 33, 10, 3, 1, 0, 64, 134, 83, 33, 10, 3, 1, 0, 163, 320, 230, 98, 33, 10, 3, 1, 0, 256, 699, 568, 270, 98, 33, 10, 3, 1, 0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1, 0, 1024, 3434, 3439, 1935, 798, 291, 98, 33, 10, 3, 1
OFFSET
0,5
FORMULA
G.f.: Product_{j>=1} 1/(1-y*x^j)^A027306(j).
EXAMPLE
T(4,2) = 10: {1,011}, {1,101}, {1,110}, {1,111}, {01,01}, {01,10}, {01,11}, {10,10}, {10,11}, {11,11}.
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 4, 3, 1;
0, 11, 10, 3, 1;
0, 16, 23, 10, 3, 1;
0, 42, 59, 33, 10, 3, 1;
0, 64, 134, 83, 33, 10, 3, 1;
0, 163, 320, 230, 98, 33, 10, 3, 1;
0, 256, 699, 568, 270, 98, 33, 10, 3, 1;
0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1;
...
MAPLE
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n,
add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12);
MATHEMATICA
g[n_] := 2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2];
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, x^n, Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1]*x^j, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 06 2018, from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A027306 (for n>0), A316403, A316404, A316405, A316406, A316407, A316408, A316409, A316410, A316411.
Row sums give A292548.
T(2n,n) gives A292549.
Sequence in context: A117372 A127570 A340583 * A212186 A274662 A186827
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 17 2017
STATUS
approved