OFFSET
0,5
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-y*x^j)^A027306(j).
EXAMPLE
T(4,2) = 10: {1,011}, {1,101}, {1,110}, {1,111}, {01,01}, {01,10}, {01,11}, {10,10}, {10,11}, {11,11}.
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 4, 3, 1;
0, 11, 10, 3, 1;
0, 16, 23, 10, 3, 1;
0, 42, 59, 33, 10, 3, 1;
0, 64, 134, 83, 33, 10, 3, 1;
0, 163, 320, 230, 98, 33, 10, 3, 1;
0, 256, 699, 568, 270, 98, 33, 10, 3, 1;
0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1;
...
MAPLE
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n,
add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12);
MATHEMATICA
g[n_] := 2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2];
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, x^n, Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1]*x^j, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 06 2018, from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 17 2017
STATUS
approved