

A316410


Number of multisets of exactly nine nonempty binary words with a total of n letters such that no word has a majority of 0's.


2



1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45684, 120435, 313280, 808581, 2065885, 5241557, 13191343, 32992806, 81964072, 202499115, 497418503, 1215823396, 2956890329, 7159215090, 17256728038, 41428552721, 99060756883, 235997525351, 560191343126
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

9,2


LINKS

Alois P. Heinz, Table of n, a(n) for n = 9..1000


FORMULA

a(n) = [x^n y^9] 1/Product_{j>=1} (1y*x^j)^A027306(j).


MAPLE

g:= n> 2^(n1)+`if`(n::odd, 0, binomial(n, n/2)/2):
b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
binomial(g(i)+j1, j)*b(ni*j, i1)*x^j, j=0..n/i)), x, 10)
end:
a:= n> coeff(b(n$2), x, 9):
seq(a(n), n=9..37);


CROSSREFS

Column k=9 of A292506.
Cf. A027306, A292549.
Sequence in context: A316407 A316408 A316409 * A316411 A292549 A062454
Adjacent sequences: A316407 A316408 A316409 * A316411 A316412 A316413


KEYWORD

nonn


AUTHOR

Alois P. Heinz, Jul 02 2018


STATUS

approved



