login
A292508
Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
20
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
OFFSET
0,8
COMMENTS
Partial sum operator applied to column k gives column k+1.
A(n,k) is also defined for k < 0. All given formulas and programs can be applied also if k is negative.
LINKS
FORMULA
G.f. of column k: 1/(1-x)^k * 1/Product_{j>1} (1-x^j).
Column k is Euler transform of k,1,1,1,... .
For fixed k>=0, A(n,k) ~ 2^((k-5)/2) * 3^((k-2)/2) * n^((k-3)/2) * exp(Pi*sqrt(2*n/3)) / Pi^(k-1). - Vaclav Kotesovec, Oct 24 2018
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 2, 4, 7, 11, 16, 22, 29, 37, ...
1, 3, 7, 14, 25, 41, 63, 92, 129, ...
2, 5, 12, 26, 51, 92, 155, 247, 376, ...
2, 7, 19, 45, 96, 188, 343, 590, 966, ...
4, 11, 30, 75, 171, 359, 702, 1292, 2258, ...
4, 15, 45, 120, 291, 650, 1352, 2644, 4902, ...
7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
A(n-1, k)+A(n, k-1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# third Maple program:
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)
CROSSREFS
Rows n=0-4 give: A000012, A001477, A000124, A004006(k+1), A027927(k+3).
Main diagonal gives A292463.
A(n,n+1) gives A292613.
Sequence in context: A115594 A086623 A248736 * A237597 A034928 A280267
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 17 2017
STATUS
approved