OFFSET
0,8
COMMENTS
Partial sum operator applied to column k gives column k+1.
A(n,k) is also defined for k < 0. All given formulas and programs can be applied also if k is negative.
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
G.f. of column k: 1/(1-x)^k * 1/Product_{j>1} (1-x^j).
Column k is Euler transform of k,1,1,1,... .
For fixed k>=0, A(n,k) ~ 2^((k-5)/2) * 3^((k-2)/2) * n^((k-3)/2) * exp(Pi*sqrt(2*n/3)) / Pi^(k-1). - Vaclav Kotesovec, Oct 24 2018
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 2, 4, 7, 11, 16, 22, 29, 37, ...
1, 3, 7, 14, 25, 41, 63, 92, 129, ...
2, 5, 12, 26, 51, 92, 155, 247, 376, ...
2, 7, 19, 45, 96, 188, 343, 590, 966, ...
4, 11, 30, 75, 171, 359, 702, 1292, 2258, ...
4, 15, 45, 120, 291, 650, 1352, 2644, 4902, ...
7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
A(n-1, k)+A(n, k-1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# third Maple program:
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 17 2017
STATUS
approved