OFFSET
0,8
COMMENTS
For fixed k>=0, A(n,k) ~ Pi * 2^(k - 5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
G.f. of column k: (1 + x)^k * Product_{j>=2} 1 / (1 - x^j). - Ilya Gutkovskiy, Apr 24 2021
EXAMPLE
A(3,4) = 9: 3, 21a, 21b, 21c, 21d, 1a1b1c, 1a1b1d, 1a1c1d, 1b1c1d.
A(4,3) = 8: 4, 31a, 31b, 31c, 22, 21a1b, 21a1c, 21b1c.
A(4,4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 1, 2, 4, 7, 11, 16, 22, 29, ...
1, 2, 3, 5, 9, 16, 27, 43, 65, ...
2, 3, 5, 8, 13, 22, 38, 65, 108, ...
2, 4, 7, 12, 20, 33, 55, 93, 158, ...
4, 6, 10, 17, 29, 49, 82, 137, 230, ...
4, 8, 14, 24, 41, 70, 119, 201, 338, ...
7, 11, 19, 33, 57, 98, 168, 287, 488, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2017
STATUS
approved