login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A292622
Number A(n,k) of partitions of n with up to k distinct kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
16
1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 4, 4, 3, 3, 2, 1, 5, 7, 5, 5, 4, 4, 1, 6, 11, 9, 8, 7, 6, 4, 1, 7, 16, 16, 13, 12, 10, 8, 7, 1, 8, 22, 27, 22, 20, 17, 14, 11, 8, 1, 9, 29, 43, 38, 33, 29, 24, 19, 15, 12, 1, 10, 37, 65, 65, 55, 49, 41, 33, 26, 20, 14
OFFSET
0,8
COMMENTS
For fixed k>=0, A(n,k) ~ Pi * 2^(k - 5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
LINKS
FORMULA
G.f. of column k: (1 + x)^k * Product_{j>=2} 1 / (1 - x^j). - Ilya Gutkovskiy, Apr 24 2021
EXAMPLE
A(3,4) = 9: 3, 21a, 21b, 21c, 21d, 1a1b1c, 1a1b1d, 1a1c1d, 1b1c1d.
A(4,3) = 8: 4, 31a, 31b, 31c, 22, 21a1b, 21a1c, 21b1c.
A(4,4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 1, 2, 4, 7, 11, 16, 22, 29, ...
1, 2, 3, 5, 9, 16, 27, 43, 65, ...
2, 3, 5, 8, 13, 22, 38, 65, 108, ...
2, 4, 7, 12, 20, 33, 55, 93, 158, ...
4, 6, 10, 17, 29, 49, 82, 137, 230, ...
4, 8, 14, 24, 41, 70, 119, 201, 338, ...
7, 11, 19, 33, 57, 98, 168, 287, 488, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
CROSSREFS
Rows n=0-4 give: A000012, A001477, A000124(k-1) for k>0, A011826 for k>0.
Main diagonal gives A292507.
Sequence in context: A304382 A304717 A110963 * A292869 A106348 A161092
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2017
STATUS
approved