login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320689
Number of partitions of n with up to two distinct kinds of 1.
2
1, 2, 2, 3, 5, 7, 10, 14, 19, 26, 35, 46, 61, 80, 103, 133, 171, 217, 275, 347, 435, 544, 677, 838, 1036, 1276, 1564, 1913, 2334, 2837, 3441, 4163, 5022, 6046, 7262, 8701, 10407, 12421, 14792, 17586, 20871, 24721, 29234, 34514, 40679, 47874, 56256, 66003
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * sqrt(2) * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^2 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1,
binomial(2, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[2, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]];
a[n_] := b[n, n];
a /@ Range[0, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A292622.
Sequence in context: A190660 A180158 A373014 * A173693 A058278 A097333
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 19 2018
STATUS
approved