login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320692
Number of partitions of n with up to five distinct kinds of 1.
2
1, 5, 11, 16, 22, 33, 49, 70, 98, 135, 184, 248, 330, 436, 572, 743, 959, 1232, 1572, 1994, 2518, 3165, 3961, 4936, 6125, 7575, 9338, 11469, 14041, 17142, 20867, 25331, 30671, 37042, 44629, 53647, 64342, 77007, 91977, 109632, 130426, 154884, 183596, 217250
OFFSET
0,2
LINKS
FORMULA
a(n) ~ Pi * 2^(5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018
G.f.: (1 + x)^5 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1,
binomial(5, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[5, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]];
a[n_] := b[n, n];
a /@ Range[0, 60] (* Jean-François Alcover, Dec 14 2020 *)
CROSSREFS
Column k=5 of A292622.
Sequence in context: A314169 A299911 A314170 * A314171 A314172 A314173
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 19 2018
STATUS
approved