The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320690 Number of partitions of n with up to three distinct kinds of 1. 2
 1, 3, 4, 5, 8, 12, 17, 24, 33, 45, 61, 81, 107, 141, 183, 236, 304, 388, 492, 622, 782, 979, 1221, 1515, 1874, 2312, 2840, 3477, 4247, 5171, 6278, 7604, 9185, 11068, 13308, 15963, 19108, 22828, 27213, 32378, 38457, 45592, 53955, 63748, 75193, 88553, 104130 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) ~ Pi * sqrt(2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018 G.f.: (1 + x)^3 * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021 MAPLE b:= proc(n, i) option remember; `if`(n=0 or i=1,       binomial(3, n), `if`(i>n, 0, b(n-i, i))+b(n, i-1))     end: a:= n-> b(n\$2): seq(a(n), n=0..60); MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0 || i == 1, Binomial[3, n], If[i > n, 0, b[n - i, i]] + b[n, i - 1]]; a[n_] := b[n, n]; a /@ Range[0, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *) CROSSREFS Column k=3 of A292622. Sequence in context: A030403 A034403 A215082 * A179070 A039020 A055742 Adjacent sequences:  A320687 A320688 A320689 * A320691 A320692 A320693 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)