login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058278
Expansion of (1 - x^2)/(1 - x - x^3).
10
1, 1, 0, 1, 2, 2, 3, 5, 7, 10, 15, 22, 32, 47, 69, 101, 148, 217, 318, 466, 683, 1001, 1467, 2150, 3151, 4618, 6768, 9919, 14537, 21305, 31224, 45761, 67066, 98290, 144051, 211117, 309407, 453458, 664575, 973982, 1427440, 2092015, 3065997, 4493437
OFFSET
0,5
LINKS
Engin Özkan, Bahar Kuloǧlu, and James Peters, k-Narayana sequence self-similarity, hal-03242990 [math.CO], 2021. See p. 12.
FORMULA
G.f.: (1 - x^2)/(1 - x - x^3).
a(n+3) = Sum_{k=0..n} binomial(n-k, floor(k/2)). - Paul Barry, Jul 06 2004
a(n) = a(n-3) + a(n-1). - Graeme McRae, Apr 26 2010
From Wolfdieter Lang, Apr 21 2015 : (Start)
a(n) = A097333(n-3), n >= 3.
a(n) = A000930(n) - A000930(n-2), n >= 2. (End)
a(n) = A003410(n-4) for n >= 5. - Jianing Song, Aug 11 2023
MATHEMATICA
CoefficientList[Series[(1 - x^2)/(1 - x - x^3), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Dec 28 2010 *)
LinearRecurrence[{1, 0, 1}, {1, 1, 0}, 50] (* Harvey P. Dale, Apr 03 2015 *)
PROG
(PARI) Vec((1-x^2)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
CROSSREFS
Essentially the same as A003410 and A097333.
Cf. A000930.
Sequence in context: A373014 A320689 A173693 * A097333 A001083 A173696
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Dec 06 2000
EXTENSIONS
Edited: Offset corrected to 0. The formula by P. Barry corrected. Old formulas adapted to new offset. - Wolfdieter Lang, Apr 21 2015
STATUS
approved