login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058279
a(0)=a(1)=1, a(n)=a(n-2)+(n+1)*a(n-1).
7
1, 1, 4, 17, 89, 551, 3946, 32119, 293017, 2962289, 32878196, 397500641, 5200386529, 73202912047, 1103244067234, 17725107987791, 302430079859681, 5461466545462049, 104070294443638612, 2086867355418234289, 43928284758226558681, 968509132036402525271
OFFSET
0,3
LINKS
Chris Cannings, The Stationary Distributions of a Class of Markov Chains, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773.
David Ji, Michael Li, and Daniel Wang, Parallel chip-firing games on directed graphs, arXiv:2407.15889 [math.CO], 2024.
FORMULA
a(n) is asymptotic to c*n! with c=0.9007... - Benoit Cloitre, Sep 03 2002
Right asymptotic (with offset=0) is a(n) ~ c * (n+1)!, where c = 2*BesselI(1,2)-BesselI(0,2) = 0.9016884069385908593273044... - Vaclav Kotesovec, Jan 05 2013
E.g.f.: 2*Pi*(I*BesselY(3, 2*I)*BesselI(2, 2*sqrt(1-x)) + BesselI(3, 2)*BesselY(2, 2*I*sqrt(1-x)))/(1-x). Such e.g.f. computations were inspired after e-mail exchange with Gary Detlefs. After differentiation and putting x=0 one has to use simplifications. See the Abramowitz-Stegun handbook, p.360, 9.1.16. [Wolfdieter Lang, May 19 2010]
MAPLE
A058279 := proc(n) option remember; if n <= 1 then 1 else A058279(n-2)+(n+1)*A058279(n-1); fi; end;
MATHEMATICA
RecurrenceTable[{a[0] == a[1] == 1, a[n] == a[n-2] + a[n-1] (n+1)}, a, {n, 30}] (* Vincenzo Librandi, May 06 2013 *)
PROG
(Magma) [n le 2 select 1 else Self(n-2)+Self(n-1)*(n): n in [1..30]]; // Vincenzo Librandi, May 06 2013
CROSSREFS
See A058307 for the same recurrence with 0,1 inputs. [Wolfdieter Lang, May 19 2010]
Sequence in context: A354308 A357617 A350474 * A143405 A376159 A303793
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 09 2000
STATUS
approved