login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058282 Continued fraction for e^3. 4
20, 11, 1, 2, 4, 3, 1, 5, 1, 2, 16, 1, 1, 16, 2, 13, 14, 4, 6, 2, 1, 1, 2, 2, 2, 3, 5, 1, 3, 1, 1, 68, 7, 5, 1, 4, 2, 1, 1, 1, 1, 1, 1, 7, 3, 1, 6, 1, 2, 5, 4, 7, 2, 1, 3, 2, 2, 1, 2, 1, 4, 1, 1, 13, 1, 1, 2, 1, 1, 1, 1, 3, 7, 11, 18, 54, 1, 2, 2, 2, 1, 1, 6, 2, 2, 46, 2, 189, 1, 24, 1, 8, 13, 4, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

K. Matthews, Finding the continued fraction of e^(l/m) ["... there is no known formula for the partial quotients of the continued fraction expansion of e^3, or more generally e^(l/m) with l distinct from 1,2 and gcd(l,m)=1..."]

G. Xiao, Contfrac

Index entries for continued fractions for constants

EXAMPLE

20.085536923187667740928529... = 20 + 1/(11 + 1/(1 + 1/(2 + 1/(4 + ...)))). - Harry J. Smith, Apr 30 2009

MAPLE

with(numtheory); Digits:=200: cf:=convert(evalf( exp(3)), confrac); # N. J. A. Sloane, Sep 05 2012

MATHEMATICA

ContinuedFraction[ E^3, 100]

PROG

(PARI) contfrac(exp(1)^3)

(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(3)); for (n=1, 20001, write("b058282.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009

CROSSREFS

Cf. A001204, A003417, A005131.

Sequence in context: A033966 A033340 A040383 * A298208 A247337 A071160

Adjacent sequences:  A058279 A058280 A058281 * A058283 A058284 A058285

KEYWORD

cofr,nonn,easy

AUTHOR

Robert G. Wilson v, Dec 07 2000

EXTENSIONS

More terms from Jason Earls, Jul 10 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 14:40 EDT 2021. Contains 343154 sequences. (Running on oeis4.)