login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357617
Expansion of e.g.f. sinh( (exp(4*x) - 1)/4 ).
3
0, 1, 4, 17, 88, 657, 6844, 83393, 1072880, 14242785, 197046964, 2895895345, 45930435016, 789930042865, 14628150636012, 287915593953889, 5950831121362656, 128180962018224833, 2868724306984850020, 66704877850797014353, 1613138176448134032440
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor((n-1)/2)} 4^(n-1-2*k) * Stirling2(n,2*k+1).
a(n) ~ 2^(2*n-1) * exp(n/LambertW(4*n) - n - 1/4) * n^n / (LambertW(4*n)^n * sqrt(1 + LambertW(4*n))). - Vaclav Kotesovec, Oct 07 2022
MATHEMATICA
With[{m = 20}, Range[0, m]! * CoefficientList[Series[Sinh[(Exp[4*x] - 1)/4], {x, 0, m}], x]] (* Amiram Eldar, Oct 07 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh((exp(4*x)-1)/4))))
(PARI) a(n) = sum(k=0, (n-1)\2, 4^(n-1-2*k)*stirling(n, 2*k+1, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 07 2022
STATUS
approved