login
A357650
Expansion of e.g.f. cosh( (exp(4*x) - 1)/4 ).
3
1, 0, 1, 12, 113, 1000, 8977, 86996, 959905, 12303888, 179038689, 2840696540, 47684181393, 835731314808, 15277172343409, 292597596283684, 5900038421042753, 125488177929542944, 2809541905807203009, 65903118624174027436, 1610968753088423886257
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * Stirling2(n,2*k).
a(n) ~ 2^(2*n-1) * exp(n/LambertW(4*n) - n - 1/4) * n^n / (LambertW(4*n)^n * sqrt(1 + LambertW(4*n))). - Vaclav Kotesovec, Oct 07 2022
MATHEMATICA
With[{m = 20}, Range[0, m]! * CoefficientList[Series[Cosh[(Exp[4*x] - 1)/4], {x, 0, m}], x]] (* Amiram Eldar, Oct 07 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(cosh((exp(4*x)-1)/4)))
(PARI) a(n) = sum(k=0, n\2, 4^(n-2*k)*stirling(n, 2*k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 07 2022
STATUS
approved