login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124651
Least n-digit number m such that m and m^10 are zeroless.
1
1, 12, 113, 1134, 11227, 112154, 1112236, 11111566, 111123685, 1111133874, 11111178192, 111111796422, 1111111392823, 11111112811396, 111111112641445, 1111111115954155, 11111111158315794, 111111111132821544, 1111111111273944122, 11111111111777673838, 111111111113343756694
OFFSET
1,2
COMMENTS
a(n)^10 is converging to 2867971991..1 (1 repeated 10*n-18 times at end), or 10^(10*n-10) times the smallest rational greater than (10/9)^10 that contains no 0 digit. - Michael S. Branicky, Jan 12 2021
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..25
EXAMPLE
12^10 is 61917364224 but 10 and 11^10 = 25937424601 have zeros. - Michael S. Branicky, Jan 12 2021
PROG
(Python)
from sympy import integer_nthroot
def a(n):
if n == 1: return 1
m, perfect = integer_nthroot(int('286797199' + '1'*(10*n-18)), 10)
strm = str(m)
# strm = "1"*n # slower than the foregoing for larger n
while strm.count('0') > 0 or str(m**10).count('0') > 0:
if '0' in strm:
ind0 = strm.find('0')
m = int(strm[:ind0] + '1'*(len(strm)-ind0))
elif strm[-1] == '9':
m += 2
else:
m += 1
strm = str(m)
return m
for n in range(1, 15):
print(a(n), end=", ") # Michael S. Branicky, Jan 12 2021
CROSSREFS
Sequence in context: A357650 A322649 A198375 * A231379 A237855 A055287
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Dec 22 2006
EXTENSIONS
a(17) and beyond from Michael S. Branicky, Jan 12 2021
STATUS
approved