Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 12 2021 21:35:29
%S 1,12,113,1134,11227,112154,1112236,11111566,111123685,1111133874,
%T 11111178192,111111796422,1111111392823,11111112811396,
%U 111111112641445,1111111115954155,11111111158315794,111111111132821544,1111111111273944122,11111111111777673838,111111111113343756694
%N Least n-digit number m such that m and m^10 are zeroless.
%C a(n)^10 is converging to 2867971991..1 (1 repeated 10*n-18 times at end), or 10^(10*n-10) times the smallest rational greater than (10/9)^10 that contains no 0 digit. - _Michael S. Branicky_, Jan 12 2021
%H Michael S. Branicky, <a href="/A124651/b124651.txt">Table of n, a(n) for n = 1..25</a>
%e 12^10 is 61917364224 but 10 and 11^10 = 25937424601 have zeros. - _Michael S. Branicky_, Jan 12 2021
%o (Python)
%o from sympy import integer_nthroot
%o def a(n):
%o if n == 1: return 1
%o m, perfect = integer_nthroot(int('286797199' + '1'*(10*n-18)), 10)
%o strm = str(m)
%o # strm = "1"*n # slower than the foregoing for larger n
%o while strm.count('0') > 0 or str(m**10).count('0') > 0:
%o if '0' in strm:
%o ind0 = strm.find('0')
%o m = int(strm[:ind0] + '1'*(len(strm)-ind0))
%o elif strm[-1] == '9':
%o m += 2
%o else:
%o m += 1
%o strm = str(m)
%o return m
%o for n in range(1, 15):
%o print(a(n), end=", ") # _Michael S. Branicky_, Jan 12 2021
%K base,nonn
%O 1,2
%A _Zak Seidov_, Dec 22 2006
%E a(17) and beyond from _Michael S. Branicky_, Jan 12 2021