The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350474 G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies: A(x*R(x)) = x^2 - x^4, where A(R(x)) = x. 5
 1, 1, 4, 17, 89, 487, 2835, 17039, 105390, 665364, 4273038, 27820758, 183232742, 1218574419, 8171805764, 55196973265, 375190697191, 2564513095021, 17615896411327, 121541577797136, 841923706799550, 5853065006349460, 40823876909916688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..23. FORMULA G.f.: A(x) = Series_Reversion( Product_{n>=0} F(n) ), where F(0) = x, F(1) = 1-x^2, and F(n+1) = 1 - (1 - F(n))^2 * F(n)^2 for n > 0. EXAMPLE G.f.: A(x) = x + x^3 + 4*x^5 + 17*x^7 + 89*x^9 + 487*x^11 + 2835*x^13 + 17039*x^15 + 105390*x^17 + 665364*x^19 + ... The series reversion is here denoted R(x) so that A(R(x)) = x where R(x) = x - x^3 - x^5 + 3*x^7 - 4*x^9 + 6*x^11 - 7*x^13 - 11*x^15 + 54*x^17 - 68*x^19 + ... + A350475(n)*x^(2*n-1) + ... and which by definition also satisfies A(x*R(x)) = x^2 - x^4. GENERATING METHOD. One may obtain the g.f. A(x) from the following method used to generate the series reversion R(x). Define F(n), a polynomial in x of order 2^(2*n-1), by the following recurrence: F(0) = x, F(1) = (1 - x^2), F(2) = (1 - x^4 * (1-x^2)^2), F(3) = (1 - x^8 * (1-x^2)^4 * F(2)^2), F(4) = (1 - x^16 * (1-x^2)^8 * F(2)^4 * F(3)^2), F(5) = (1 - x^32 * (1-x^2)^16 * F(2)^8 * F(3)^4 * F(4)^2), ... F(n+1) = 1 - (1 - F(n))^2 * F(n)^2 ... Then the series reversion R(x) equals the infinite product: R(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ... that is, R(x) = x * (1-x^2) * (1 - x^4*(1-x^2)^2) * (1 - x^8*(1-x^2)^4*(1 - x^2*(1-x^2)^2)^2) * (1 - x^16*(1-x^2)^8*(1 - x^2*(1-x^2)^2)^4*(1 - x^4*(1-x^2)^4*(1 - x^2*(1-x^2)^2)^2)^2) * ... The g.f. of this sequence is then obtained as the series reversion of this infinite product. PROG (PARI) {a(n) = my(A=[1, 0]); for(i=1, n, A=concat(A, 0); A[#A] = -polcoeff( x^2*(1 - x^2) - subst(x*Ser(A), x, x * serreverse(x*Ser(A))), #A+1) ); A[n]} for(n=1, 30, print1(a(2*n-1), ", ")) (PARI) /* Using Infinite Product Formula for Series Reversion */ {F(n) = my(G=x); if(n==0, G=x, if(n==1, G = (1-x^2), G = 1 - (1 - F(n-1))^2 * F(n-1)^2 )); G} {a(n) = my(A, B = prod(k=0, #binary(n), F(k) +x*O(x^n))); A = serreverse(B); polcoeff(A, n)} for(n=1, 30, print1(a(2*n-1), ", ")) CROSSREFS Cf. A350475 (inverse), A273162, A273203, A350434, A350476, A350478, A350480, A350482. Sequence in context: A364212 A354308 A357617 * A058279 A143405 A303793 Adjacent sequences: A350471 A350472 A350473 * A350475 A350476 A350477 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 01 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)