login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies: A(x*R(x)) = x^2 - x^4, where A(R(x)) = x.
5

%I #10 Sep 01 2022 12:01:09

%S 1,1,4,17,89,487,2835,17039,105390,665364,4273038,27820758,183232742,

%T 1218574419,8171805764,55196973265,375190697191,2564513095021,

%U 17615896411327,121541577797136,841923706799550,5853065006349460,40823876909916688

%N G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies: A(x*R(x)) = x^2 - x^4, where A(R(x)) = x.

%F G.f.: A(x) = Series_Reversion( Product_{n>=0} F(n) ), where F(0) = x, F(1) = 1-x^2, and F(n+1) = 1 - (1 - F(n))^2 * F(n)^2 for n > 0.

%e G.f.: A(x) = x + x^3 + 4*x^5 + 17*x^7 + 89*x^9 + 487*x^11 + 2835*x^13 + 17039*x^15 + 105390*x^17 + 665364*x^19 + ...

%e The series reversion is here denoted R(x) so that A(R(x)) = x where

%e R(x) = x - x^3 - x^5 + 3*x^7 - 4*x^9 + 6*x^11 - 7*x^13 - 11*x^15 + 54*x^17 - 68*x^19 + ... + A350475(n)*x^(2*n-1) + ...

%e and which by definition also satisfies A(x*R(x)) = x^2 - x^4.

%e GENERATING METHOD.

%e One may obtain the g.f. A(x) from the following method used to generate the series reversion R(x).

%e Define F(n), a polynomial in x of order 2^(2*n-1), by the following recurrence:

%e F(0) = x,

%e F(1) = (1 - x^2),

%e F(2) = (1 - x^4 * (1-x^2)^2),

%e F(3) = (1 - x^8 * (1-x^2)^4 * F(2)^2),

%e F(4) = (1 - x^16 * (1-x^2)^8 * F(2)^4 * F(3)^2),

%e F(5) = (1 - x^32 * (1-x^2)^16 * F(2)^8 * F(3)^4 * F(4)^2),

%e ...

%e F(n+1) = 1 - (1 - F(n))^2 * F(n)^2

%e ...

%e Then the series reversion R(x) equals the infinite product:

%e R(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...

%e that is,

%e R(x) = x * (1-x^2) * (1 - x^4*(1-x^2)^2) * (1 - x^8*(1-x^2)^4*(1 - x^2*(1-x^2)^2)^2) * (1 - x^16*(1-x^2)^8*(1 - x^2*(1-x^2)^2)^4*(1 - x^4*(1-x^2)^4*(1 - x^2*(1-x^2)^2)^2)^2) * ...

%e The g.f. of this sequence is then obtained as the series reversion of this infinite product.

%o (PARI) {a(n) = my(A=[1,0]); for(i=1,n, A=concat(A,0);

%o A[#A] = -polcoeff( x^2*(1 - x^2) - subst(x*Ser(A),x, x * serreverse(x*Ser(A))), #A+1) );A[n]}

%o for(n=1,30,print1(a(2*n-1),", "))

%o (PARI) /* Using Infinite Product Formula for Series Reversion */

%o {F(n) = my(G=x); if(n==0,G=x, if(n==1, G = (1-x^2), G = 1 - (1 - F(n-1))^2 * F(n-1)^2 ));G}

%o {a(n) = my(A, B = prod(k=0,#binary(n), F(k) +x*O(x^n)));

%o A = serreverse(B); polcoeff(A,n)}

%o for(n=1,30,print1(a(2*n-1),", "))

%Y Cf. A350475 (inverse), A273162, A273203, A350434, A350476, A350478, A350480, A350482.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jan 01 2022