The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135168 a(n) = 7^n + 5^n + 3^n + 2^n. 1
4, 17, 87, 503, 3123, 20207, 134067, 903983, 6162243, 42326927, 292300947, 2026334063, 14085963363, 98111316047, 684331387827, 4778093469743, 33385561572483, 233393582711567, 1632228682858707, 11417969834487023, 79887637217085603, 559022711703937487 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Constants (7,5,3,2) are the prime numbers in decreasing order.
LINKS
FORMULA
From G. C. Greubel, Sep 30 2016: (Start)
a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4).
G.f.: (4 - 51*x + 202*x^2 - 247*x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).
E.g.f.: exp(7*x) + exp(5*x) + exp(3*x) + exp(2*x). (End)
EXAMPLE
a(4) = 3123 = 7^4 + 5^4 + 3^4 + 2^4 = 2401 + 625 + 81 + 16.
MAPLE
A135168:=n->7^n+5^n+3^n+2^n; seq(A135168(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
MATHEMATICA
Table[7^n+5^n+3^n+2^n, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 05 2013 *)
LinearRecurrence[{17, -101, 247, -210}, {4, 17, 87, 503}, 25] (* G. C. Greubel, Sep 30 2016 *)
PROG
(Magma) [7^n+5^n+3^n+2^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
(PARI) a(n)=7^n+5^n+3^n+2^n \\ Charles R Greathouse IV, Sep 30 2016
CROSSREFS
Sequence in context: A331158 A110508 A114190 * A364212 A354308 A357617
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 21 2007
EXTENSIONS
Edited by N. J. A. Sloane, Dec 14 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 12:18 EDT 2024. Contains 372630 sequences. (Running on oeis4.)