OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (10,-31,30).
FORMULA
a(n) = 5^n + 3^n - 2^n.
From Mohammad K. Azarian, Jan 16 2009: (Start)
G.f.: 1/(1-5*x) + 1/(1-3*x) - 1/(1-2*x).
E.g.f.: e^(5*x) + e^(3*x) - e^(2*x). (End)
a(0)=1, a(1)=6, a(2)=30, a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Harvey P. Dale, Mar 10 2013
EXAMPLE
a(4)=690 because 5^4=625, 3^4=81, 2^4=16 and we can write 625 + 81 - 16 = 690.
MATHEMATICA
lst={}; Do[p=5^n+3^n-2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
Table[5^n+3^n-2^n, {n, 0, 30}] (* or *) LinearRecurrence[{10, -31, 30}, {1, 6, 30}, 30] (* Harvey P. Dale, Mar 10 2013 *)
PROG
(Magma)[5^n+3^n-2^n: n in [0..50]] // Vincenzo Librandi, Dec 15 2010
(PARI) a(n)=5^n+3^n-2^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 21 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 15 2010
STATUS
approved