login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135160
a(n) = 5^n + 3^n - 2^n.
9
1, 6, 30, 144, 690, 3336, 16290, 80184, 396930, 1972296, 9823650, 49003224, 244667970, 1222289256, 6108282210, 30531894264, 152630871810, 763068462216, 3815084423970, 19074648065304, 95370917376450, 476847616459176, 2384217167880930, 11921023089868344, 59604927188149890, 298024071132008136
OFFSET
0,2
FORMULA
a(n) = 5^n + 3^n - 2^n.
From Mohammad K. Azarian, Jan 16 2009: (Start)
G.f.: 1/(1-5*x) + 1/(1-3*x) - 1/(1-2*x).
E.g.f.: e^(5*x) + e^(3*x) - e^(2*x). (End)
a(0)=1, a(1)=6, a(2)=30, a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Harvey P. Dale, Mar 10 2013
EXAMPLE
a(4)=690 because 5^4=625, 3^4=81, 2^4=16 and we can write 625 + 81 - 16 = 690.
MATHEMATICA
lst={}; Do[p=5^n+3^n-2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
Table[5^n+3^n-2^n, {n, 0, 30}] (* or *) LinearRecurrence[{10, -31, 30}, {1, 6, 30}, 30] (* Harvey P. Dale, Mar 10 2013 *)
PROG
(Magma)[5^n+3^n-2^n: n in [0..50]] // Vincenzo Librandi, Dec 15 2010
(PARI) a(n)=5^n+3^n-2^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 21 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 15 2010
STATUS
approved