login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135160 a(n) = 5^n + 3^n - 2^n. 9
1, 6, 30, 144, 690, 3336, 16290, 80184, 396930, 1972296, 9823650, 49003224, 244667970, 1222289256, 6108282210, 30531894264, 152630871810, 763068462216, 3815084423970, 19074648065304, 95370917376450, 476847616459176, 2384217167880930, 11921023089868344, 59604927188149890, 298024071132008136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-31,30).

FORMULA

a(n) = 5^n + 3^n - 2^n.

From Mohammad K. Azarian, Jan 16 2009: (Start)

G.f.: 1/(1-5*x) + 1/(1-3*x) - 1/(1-2*x).

E.g.f.: e^(5*x) + e^(3*x) - e^(2*x). (End)

a(0)=1, a(1)=6, a(2)=30, a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Harvey P. Dale, Mar 10 2013

EXAMPLE

a(4)=690 because 5^4=625, 3^4=81, 2^4=16 and we can write 625 + 81 - 16 = 690.

MATHEMATICA

lst={}; Do[p=5^n+3^n-2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)

Table[5^n+3^n-2^n, {n, 0, 30}] (* or *) LinearRecurrence[{10, -31, 30}, {1, 6, 30}, 30] (* Harvey P. Dale, Mar 10 2013 *)

PROG

(MAGMA)[5^n+3^n-2^n: n in [0..50]] // Vincenzo Librandi, Dec 15 2010

(PARI) a(n)=5^n+3^n-2^n \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A000079, A000244, A000351, A001047.

Sequence in context: A030192 A026376 A026899 * A276022 A046945 A216045

Adjacent sequences:  A135157 A135158 A135159 * A135161 A135162 A135163

KEYWORD

easy,nonn

AUTHOR

Omar E. Pol, Nov 21 2007

EXTENSIONS

More terms from Vincenzo Librandi, Dec 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 21:25 EDT 2020. Contains 337322 sequences. (Running on oeis4.)