The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135158 a(n) = 5^n - 3^n - 2^n. 9
 -1, 0, 12, 90, 528, 2850, 14832, 75810, 383808, 1932930, 9705552, 48648930, 243605088, 1219100610, 6098716272, 30503196450, 152544778368, 762810181890, 3814309582992, 19072323542370, 95363943807648, 476826695752770, 2384154405761712, 11920834803510690, 59604362329076928, 298022376554789250 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially the same as A130072. - Zak Seidov, Oct 03 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (10,-31,30). FORMULA G.f.: ( 1+19*x^2-10*x ) / ( (3*x-1)*(2*x-1)*(5*x-1) ). a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Zak Seidov, Oct 03 2011 E.g.f.: exp(5*x) - exp(3*x) - exp(2*x). - G. C. Greubel, Sep 30 2016 EXAMPLE a(4) = 528 because 5^4 = 625, 3^4 = 81, 2^4 = 16 and 625 - 81 - 16 = 528. MAPLE A135158:=n->5^n-3^n-2^n; seq(A135158(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014 MATHEMATICA lst={}; Do[p=5^n-3^n-2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *) LinearRecurrence[{10, -31, 30}, {-1, 0, 12}, 25] (* or *) Table[5^n - 3^n - 2^n, {n, 0, 25}] (* G. C. Greubel, Sep 30 2016 *) PROG (MAGMA)[5^n-3^n-2^n: n in [0..50]] - Vincenzo Librandi, Dec 15 2010 (PARI) a(n)=5^n-3^n-2^n \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A000079, A000244, A000351, A001047, A130072. Sequence in context: A005758 A084485 A130072 * A073382 A036216 A022640 Adjacent sequences:  A135155 A135156 A135157 * A135159 A135160 A135161 KEYWORD easy,sign AUTHOR Omar E. Pol, Nov 21 2007 EXTENSIONS More terms from Vincenzo Librandi, Dec 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 19:27 EDT 2020. Contains 337321 sequences. (Running on oeis4.)