login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135158 a(n) = 5^n - 3^n - 2^n. 9
-1, 0, 12, 90, 528, 2850, 14832, 75810, 383808, 1932930, 9705552, 48648930, 243605088, 1219100610, 6098716272, 30503196450, 152544778368, 762810181890, 3814309582992, 19072323542370, 95363943807648, 476826695752770, 2384154405761712, 11920834803510690, 59604362329076928, 298022376554789250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Essentially the same as A130072. - Zak Seidov, Oct 03 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-31,30).

FORMULA

G.f.: ( 1+19*x^2-10*x ) / ( (3*x-1)*(2*x-1)*(5*x-1) ).

a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Zak Seidov, Oct 03 2011

E.g.f.: exp(5*x) - exp(3*x) - exp(2*x). - G. C. Greubel, Sep 30 2016

EXAMPLE

a(4) = 528 because 5^4 = 625, 3^4 = 81, 2^4 = 16 and 625 - 81 - 16 = 528.

MAPLE

A135158:=n->5^n-3^n-2^n; seq(A135158(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014

MATHEMATICA

lst={}; Do[p=5^n-3^n-2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)

LinearRecurrence[{10, -31, 30}, {-1, 0, 12}, 25] (* or *) Table[5^n - 3^n - 2^n, {n, 0, 25}] (* G. C. Greubel, Sep 30 2016 *)

PROG

(MAGMA)[5^n-3^n-2^n: n in [0..50]] - Vincenzo Librandi, Dec 15 2010

(PARI) a(n)=5^n-3^n-2^n \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A000079, A000244, A000351, A001047, A130072.

Sequence in context: A005758 A084485 A130072 * A073382 A036216 A022640

Adjacent sequences:  A135155 A135156 A135157 * A135159 A135160 A135161

KEYWORD

easy,sign

AUTHOR

Omar E. Pol, Nov 21 2007

EXTENSIONS

More terms from Vincenzo Librandi, Dec 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 00:59 EDT 2019. Contains 323534 sequences. (Running on oeis4.)