login
A135158
a(n) = 5^n - 3^n - 2^n.
9
-1, 0, 12, 90, 528, 2850, 14832, 75810, 383808, 1932930, 9705552, 48648930, 243605088, 1219100610, 6098716272, 30503196450, 152544778368, 762810181890, 3814309582992, 19072323542370, 95363943807648, 476826695752770, 2384154405761712, 11920834803510690, 59604362329076928, 298022376554789250
OFFSET
0,3
COMMENTS
Essentially the same as A130072. - Zak Seidov, Oct 03 2011
FORMULA
G.f.: ( 1+19*x^2-10*x ) / ( (3*x-1)*(2*x-1)*(5*x-1) ).
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Zak Seidov, Oct 03 2011
E.g.f.: exp(5*x) - exp(3*x) - exp(2*x). - G. C. Greubel, Sep 30 2016
EXAMPLE
a(4) = 528 because 5^4 = 625, 3^4 = 81, 2^4 = 16 and 625 - 81 - 16 = 528.
MAPLE
A135158:=n->5^n-3^n-2^n; seq(A135158(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
lst={}; Do[p=5^n-3^n-2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
LinearRecurrence[{10, -31, 30}, {-1, 0, 12}, 25] (* or *) Table[5^n - 3^n - 2^n, {n, 0, 25}] (* G. C. Greubel, Sep 30 2016 *)
PROG
(Magma)[5^n-3^n-2^n: n in [0..50]] - Vincenzo Librandi, Dec 15 2010
(PARI) a(n)=5^n-3^n-2^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Omar E. Pol, Nov 21 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 15 2010
STATUS
approved