login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135159 a(n) = 5^n - 3^n + 2^n. 9
1, 4, 20, 106, 560, 2914, 14960, 76066, 384320, 1933954, 9707600, 48653026, 243613280, 1219116994, 6098749040, 30503261986, 152544909440, 762810444034, 3814310107280, 19072324590946, 95363945904800, 476826699947074, 2384154414150320, 11920834820287906, 59604362362631360, 298022376621898114 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Constants are the prime numbers in decreasing order.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-31,30).

FORMULA

a(n) = 5^n - 3^n + 2^n.

From Mohammad K. Azarian, Jan 16 2009: (Start)

G.f.: 1/(1-5*x) - 1/(1-3*x) + 1/(1-2*x).

E.g.f.: exp(5*x) - exp(3*x) + exp(2*x). (End)

a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - G. C. Greubel, Sep 30 2016

EXAMPLE

a(4)=560 because 5^4=625, 3^4=81, 2^4=16 and 625-81+16=560.

MATHEMATICA

lst={}; Do[p=5^n-3^n+2^n; AppendTo[lst, p], {n, 0, 7^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)

CoefficientList[Series[1/(1 - 5 x) - 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)

Table[5^n - 3^n + 2^n, {n, 0, 25}] (* or *) LinearRecurrence[{10, -31, 30}, {1, 4, 20}, 25] (* G. C. Greubel, Sep 30 2016 *)

PROG

(MAGMA) [5^n-3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010

CROSSREFS

Cf. A000079, A000244, A000351, A007689.

Sequence in context: A131786 A061709 A254537 * A190724 A243585 A263965

Adjacent sequences:  A135156 A135157 A135158 * A135160 A135161 A135162

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Nov 21 2007

EXTENSIONS

More terms from Vincenzo Librandi, Dec 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 13:01 EDT 2019. Contains 328222 sequences. (Running on oeis4.)