login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135161 a(n) = 7^n - 5^n - 3^n - 2^n. Constants are the prime numbers in decreasing order. 1
-2, -3, 11, 183, 1679, 13407, 101231, 743103, 5367359, 38380287, 272649551, 1928319423, 13596611039, 95666704767, 672114757871, 4717029550143, 33080299566719, 231867445262847, 1624598512962191, 11379820536259263, 79696895378138399, 558069016462630527, 3907436831406718511 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (17,-101,247,-210).

FORMULA

From G. C. Greubel, Sep 30 2016: (Start)

a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4).

G.f.: -x*(-2 + 31 x - 140 x^2 + 187 x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).

E.g.f.: exp(7*x) - exp(5*x) - exp(3*x) - exp(2*x). (End)

EXAMPLE

a(4) = 1679 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and we can write 2401 -625 -81 -16 = 1679.

MATHEMATICA

Table[7^n-5^n-3^n-2^n, {n, 0, 30}] (* or *) LinearRecurrence[{17, -101, 247, -210}, {-2, -3, 11, 183}, 30] (* Harvey P. Dale, Sep 23 2016 *)

PROG

(MAGMA)[7^n-5^n-3^n-2^n: n in [0..50]] // Vincenzo Librandi, Dec 14 2010

(PARI) a(n) = 7^n - 5^n - 3^n - 2^n \\ Charles R Greathouse IV, Sep 30 2016

CROSSREFS

Cf. A000079, A000244, A000351, A000420, A001047, A074527, A007689, A135158, A135159, A135160.

Sequence in context: A061482 A177854 A273598 * A066100 A029497 A318130

Adjacent sequences:  A135158 A135159 A135160 * A135162 A135163 A135164

KEYWORD

easy,sign

AUTHOR

Omar E. Pol, Nov 21 2007

EXTENSIONS

More terms from Vincenzo Librandi, Dec 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 20:18 EST 2021. Contains 349432 sequences. (Running on oeis4.)