login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135162
a(n) = 7^n - 5^n - 3^n + 2^n. Constants are the prime numbers in decreasing order.
1
0, 1, 19, 199, 1711, 13471, 101359, 743359, 5367871, 38381311, 272651599, 1928323519, 13596619231, 95666721151, 672114790639, 4717029615679, 33080299697791, 231867445524991, 1624598513486479, 11379820537307839, 79696895380235551, 558069016466824831, 3907436831415107119
OFFSET
0,3
FORMULA
a(n) = 7^n - 5^n - 3^n + 2^n.
a(0)=0, a(1)=1, a(2)=19, a(3)=199, a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4). - Harvey P. Dale, Dec 13 2013
G.f.: 1/(1-7*x) - 1/(1-5*x) - 1/(1-3*x) + 1/(1-2 x). - Vincenzo Librandi, May 22 2014
E.g.f.: exp(7*x) - exp(5*x) - exp(3*x) + exp(2*x). - G. C. Greubel, Sep 30 2016
EXAMPLE
a(4) = 1711 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625-81+16 = 1711.
MATHEMATICA
Table[7^n-5^n-3^n+2^n, {n, 0, 30}] (* or *) LinearRecurrence[ {17, -101, 247, -210}, {0, 1, 19, 199}, 30] (* Harvey P. Dale, Dec 13 2013 *)
CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) - 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
PROG
(Magma) [7^n-5^n-3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
(PARI) a(n) = 7^n - 5^n - 3^n + 2^n \\ Charles R Greathouse IV, Sep 30 2016
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 21 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved