login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067272
a(n) = 2*10^(n-1)-1.
8
1, 19, 199, 1999, 19999, 199999, 1999999, 19999999, 199999999, 1999999999, 19999999999, 199999999999, 1999999999999, 19999999999999, 199999999999999, 1999999999999999, 19999999999999999, 199999999999999999, 1999999999999999999
OFFSET
1,2
COMMENTS
Smaller of the smallest pair of successive n-digit numbers which have no digit in common: (1, 2), (19, 20), (199, 200) etc. - Amarnath Murthy, Nov 10 2002
Original name: Numbers n such that the digits of T(n) = n(n+1)/2, the n-th triangular number, begin with n.
FORMULA
a(n) = 2*10^(n-1)-1. - Benoit Cloitre, Feb 28 2002
a(n) = 10*a(n-1)+9. - Vincenzo Librandi, Nov 01 2011
G.f.: x*(1+8*x)/((1-x)*(1-10*x)). - Vincenzo Librandi, Aug 13 2014
EXAMPLE
T(19) = 190 begins with 19. Hence 19 is a term of the sequence.
MATHEMATICA
(*returns true if a begins with b, false o.w.*) f2[a_, b_] := Module[{c, d, e, g, h, i, r}, r = False; c = ToString[a]; d = ToString[b]; g = StringPosition[c, d]; h = Length[g]; If[h > 0, i = g[[h]]; If[i[[1]] == 1, r = True]]; r]; Do[If[f2[n(n + 1)/2, n], Print[n]], {n, 1, 10^6} ]
CoefficientList[Series[(1 + 8 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 13 2014 *)
PROG
(Magma) [2*10^(n-1)-1 : n in [1..20]]; // Vincenzo Librandi, Nov 01 2011
(PARI) a(n) = 2*10^(n-1)-1; \\ Michel Marcus, Jul 06 2024
CROSSREFS
Sequence in context: A147830 A135162 A185687 * A065582 A241021 A055558
KEYWORD
nonn,easy
AUTHOR
Joseph L. Pe, Feb 21 2002
EXTENSIONS
a(7)-a(19) from Vincenzo Librandi, Nov 01 2011
STATUS
approved