|
|
A001551
|
|
a(n) = 1^n + 2^n + 3^n + 4^n.
(Formerly M3397 N1375)
|
|
7
|
|
|
4, 10, 30, 100, 354, 1300, 4890, 18700, 72354, 282340, 1108650, 4373500, 17312754, 68711380, 273234810, 1088123500, 4338079554, 17309140420, 69107159370, 276040692700, 1102999460754, 4408508961460, 17623571298330, 70462895745100, 281757423024354
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n)*(-1)^n, n >= 0, gives the z-sequence of the Sheffer triangle A049459 ((signed) 4-restricted Stirling1) which is the inverse Sheffer triangle of A143496 with offset [0,0](4-restricted Stirling2). See the W. Lang link under A006232 for general Sheffer a- and z-sequences. The a-sequence of every (signed) r-restricted Stirling1 number Sheffer triangle is A027641/A027642 (Bernoulli numbers).
(End)
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
E.g.f.: (1-exp(4*x))/(exp(-x)-1) = Sum_{j=1..4} exp(j*x) (trivial).
O.g.f.: 2*(2-5*x)*(1-5*x+5*x^2)/(product(1-j*x,j=1..4) (via Laplace transformation of the o.g.f., and partial fraction decomposition backwards). See the Maple Program for the o.g.f. conjecture by Simon Plouffe. This has now been proved.
(End)
|
|
MAPLE
|
A001551:=-2*(5*z-2)*(5*z**2-5*z+1)/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
|
|
MATHEMATICA
|
Table[Total[Range[4]^n], {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *)
|
|
PROG
|
(Sage) [3**n + sigma(4, n) for n in range(23)] # Zerinvary Lajos, Jun 04 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|