login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135169
Period 4: repeat [1, 5, 9, 5].
0
1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5, 9, 5, 1, 5
OFFSET
0,2
FORMULA
From R. J. Mathar, Feb 19 2008: (Start)
G.f.: -4/(x^2+1) - 5/(x-1).
a(n) = 5 - 4*A056594(n).
a(n) = a(n-4) for n>3. (End)
From Wesley Ivan Hurt, Jul 08 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2.
a(n) = 5 - 4*cos(n*Pi/2). (End)
E.g.f.: 5*exp(x) - 4*cos(x). - G. C. Greubel, Sep 30 2016
MAPLE
seq(op([1, 5, 9, 5]), n=0..50); # Wesley Ivan Hurt, Jul 08 2016
MATHEMATICA
PadRight[{}, 100, {1, 5, 9, 5}] (* Wesley Ivan Hurt, Jul 08 2016 *)
PROG
(Magma) &cat [[1, 5, 9, 5]^^30]; // Wesley Ivan Hurt, Jul 08 2016
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -1, 1]^n*[1; 5; 9])[1, 1] \\ Charles R Greathouse IV, Sep 30 2016
CROSSREFS
Cf. A056594.
Sequence in context: A201325 A372285 A359485 * A335840 A021172 A094880
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 14 2008
STATUS
approved