login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094880
Decimal expansion of phi/e, where phi = (1+sqrt(5))/2.
2
5, 9, 5, 2, 4, 1, 4, 3, 9, 5, 7, 7, 7, 1, 1, 1, 0, 9, 0, 1, 8, 0, 3, 0, 8, 2, 0, 7, 7, 4, 2, 5, 1, 7, 2, 8, 5, 7, 1, 6, 6, 4, 2, 1, 0, 7, 7, 8, 3, 2, 3, 2, 5, 3, 2, 9, 0, 2, 4, 0, 7, 8, 2, 6, 4, 0, 0, 4, 6, 7, 1, 0, 2, 8, 6, 9, 5, 3, 5, 2, 5, 4, 4, 2, 7, 6, 9, 9, 3, 9, 6, 0, 3, 8, 1, 8, 9, 0, 4
OFFSET
0,1
LINKS
Corey Martinsen and Pantelimon Stănică, Asymptotic Behavior of Gaps Between Roots of Weighted Factorials, Fibonacci Quart. 53 (2015), no. 3, 213-218. See Corollary 2.4 p. 216.
FORMULA
From Michel Marcus, Jan 11 2022: (Start)
Equals lim_{n->oo} ((n+1)!*F(n+1))^(1/(n+1)) - (n!*F(n))^(1/n).
Equals lim_{n->oo} ((n+1)!*L(n+1))^(1/(n+1)) - (n!*L(n))^(1/n). (End)
EXAMPLE
0.59524143957771110901803082077425172857166421077832...
MATHEMATICA
RealDigits[GoldenRatio/E, 10, 105][[1]] (* Amiram Eldar, May 02 2023 *)
PROG
(PARI) ((1+sqrt(5))/2)/exp(1) \\ Michel Marcus, Jan 11 2022
CROSSREFS
Cf. A001113 (e), A001622 (phi), A094868 (reciprocal).
Cf. A000032 (Lucas), A000045 (Fibonacci).
Sequence in context: A135169 A335840 A021172 * A351216 A256593 A275810
KEYWORD
cons,nonn
AUTHOR
N. J. A. Sloane, Jun 15 2004
STATUS
approved