login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135172 a(n) = 3^prime(n) + 2^prime(n). 1
13, 35, 275, 2315, 179195, 1602515, 129271235, 1162785755, 94151567435, 68630914235795, 617675543767595, 450284043329950835, 36472998576194041955, 328256976190630099835, 26588814499694991643115, 19383245676687219151537715, 14130386092315195257068234555, 127173474827954453552096993555 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Only a(1) = 2^2 + 3^2 = 13 is prime. Since all other primes p are odd, hence of form 2k+1, we have 2^(2k+1) + 3^(2k+1) is always divisible by 5, and is at best semiprime, such as 3^83 + 2^83 = 3990838394187349600940803592605746684635 = 5 * 798167678837469920188160718521149336927.

a(n) is never a perfect power (A001597), (proof in Crux Mathematicorum). - Bernard Schott, Mar 05 2019

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

H. Abbott, West German Mathematical Olympiad 1981 - First round, Problem 4, Crux Mathematicorum, p. 42, Vol. 12, Mar. 86.

FORMULA

a(n) = 3^A000040(n) + 2^A000040(n).

EXAMPLE

a(4)=2315 because the 4th prime number is 7, 3^7=2187, 2^7=128 and 2187+128=2315.

MAPLE

[3^ithprime(n)+2^ithprime(n)$n=1..20]; # Muniru A Asiru, Mar 05 2019

MATHEMATICA

3^# + 2^# &/@Prime[Range[20]] (* Harvey P. Dale, Dec 18 2010 *)

PROG

(MAGMA) [3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010

CROSSREFS

Subsequence of A007916.

Cf. A001597.

Sequence in context: A242578 A192145 A221592 * A183309 A272108 A034119

Adjacent sequences:  A135169 A135170 A135171 * A135173 A135174 A135175

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Nov 25 2007

EXTENSIONS

More terms from Vincenzo Librandi, Dec 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 07:10 EDT 2019. Contains 328335 sequences. (Running on oeis4.)