OFFSET
1,1
COMMENTS
Only a(1) = 2^2 + 3^2 = 13 is prime. Since all other primes p are odd, hence of the form 2k+1, we have 2^(2k+1) + 3^(2k+1) is always divisible by 5, and is at best semiprime, such as 3^83 + 2^83 = 3990838394187349600940803592605746684635 = 5 * 798167678837469920188160718521149336927.
a(n) is never a perfect power (A001597), this question was asked during West Germany Olympiad in 1981 (see links). - Bernard Schott, Mar 05 2019
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
H. Abbott, West German Mathematical Olympiad 1981 - First round, Problem 4, Crux Mathematicorum, p. 42, Vol. 12, Mar. 86.
The IMO Compendium, 11-th German Federal Mathematical Competition 1980/81 - First round, Problem 4.
EXAMPLE
a(4)=2315 because the 4th prime number is 7, 3^7=2187, 2^7=128 and 2187+128=2315.
MAPLE
[3^ithprime(n)+2^ithprime(n)$n=1..20]; # Muniru A Asiru, Mar 05 2019
MATHEMATICA
3^# + 2^# &/@Prime[Range[20]] (* Harvey P. Dale, Dec 18 2010 *)
PROG
(Magma) [3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
(Python)
from sympy import prime, primerange
def aupton(nn): return [3**p + 2**p for p in primerange(1, prime(nn)+1)]
print(aupton(18)) # Michael S. Branicky, Nov 21 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 25 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved