The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135172 a(n) = 3^prime(n) + 2^prime(n). 1
 13, 35, 275, 2315, 179195, 1602515, 129271235, 1162785755, 94151567435, 68630914235795, 617675543767595, 450284043329950835, 36472998576194041955, 328256976190630099835, 26588814499694991643115, 19383245676687219151537715, 14130386092315195257068234555, 127173474827954453552096993555 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Only a(1) = 2^2 + 3^2 = 13 is prime. Since all other primes p are odd, hence of the form 2k+1, we have 2^(2k+1) + 3^(2k+1) is always divisible by 5, and is at best semiprime, such as 3^83 + 2^83 = 3990838394187349600940803592605746684635 = 5 * 798167678837469920188160718521149336927. a(n) is never a perfect power (A001597), this question was asked during West Germany Olympiad in 1981 (see links). - Bernard Schott, Mar 05 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 H. Abbott, West German Mathematical Olympiad 1981 - First round, Problem 4, Crux Mathematicorum, p. 42, Vol. 12, Mar. 86. The IMO Compendium, 11-th German Federal Mathematical Competition 1980/81 - First round, Problem 4. FORMULA a(n) = 3^A000040(n) + 2^A000040(n). EXAMPLE a(4)=2315 because the 4th prime number is 7, 3^7=2187, 2^7=128 and 2187+128=2315. MAPLE [3^ithprime(n)+2^ithprime(n)\$n=1..20]; # Muniru A Asiru, Mar 05 2019 MATHEMATICA 3^# + 2^# &/@Prime[Range] (* Harvey P. Dale, Dec 18 2010 *) PROG (MAGMA) [3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010 (Python) from sympy import prime, primerange def aupton(nn): return [3**p + 2**p for p in primerange(1, prime(nn)+1)] print(aupton(18)) # Michael S. Branicky, Nov 21 2021 CROSSREFS Subsequence of A007916. Cf. A000040, A001597. Sequence in context: A242578 A192145 A221592 * A183309 A272108 A034119 Adjacent sequences:  A135169 A135170 A135171 * A135173 A135174 A135175 KEYWORD nonn,easy AUTHOR Omar E. Pol, Nov 25 2007 EXTENSIONS More terms from Vincenzo Librandi, Dec 14 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 16:01 EST 2022. Contains 350572 sequences. (Running on oeis4.)