login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135172
a(n) = 3^prime(n) + 2^prime(n).
1
13, 35, 275, 2315, 179195, 1602515, 129271235, 1162785755, 94151567435, 68630914235795, 617675543767595, 450284043329950835, 36472998576194041955, 328256976190630099835, 26588814499694991643115, 19383245676687219151537715, 14130386092315195257068234555, 127173474827954453552096993555
OFFSET
1,1
COMMENTS
Only a(1) = 2^2 + 3^2 = 13 is prime. Since all other primes p are odd, hence of the form 2k+1, we have 2^(2k+1) + 3^(2k+1) is always divisible by 5, and is at best semiprime, such as 3^83 + 2^83 = 3990838394187349600940803592605746684635 = 5 * 798167678837469920188160718521149336927.
a(n) is never a perfect power (A001597), this question was asked during West Germany Olympiad in 1981 (see links). - Bernard Schott, Mar 05 2019
FORMULA
a(n) = 3^A000040(n) + 2^A000040(n).
EXAMPLE
a(4)=2315 because the 4th prime number is 7, 3^7=2187, 2^7=128 and 2187+128=2315.
MAPLE
[3^ithprime(n)+2^ithprime(n)$n=1..20]; # Muniru A Asiru, Mar 05 2019
MATHEMATICA
3^# + 2^# &/@Prime[Range[20]] (* Harvey P. Dale, Dec 18 2010 *)
PROG
(Magma) [3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
(Python)
from sympy import prime, primerange
def aupton(nn): return [3**p + 2**p for p in primerange(1, prime(nn)+1)]
print(aupton(18)) # Michael S. Branicky, Nov 21 2021
CROSSREFS
Subsequence of A007916.
Sequence in context: A242578 A192145 A221592 * A183309 A272108 A034119
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 25 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved