OFFSET
1,2
COMMENTS
Column 4 of A221596.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Sergey Kitaev, Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
Index entries for linear recurrences with constant coefficients, signature (3,4,0,6,4,4).
FORMULA
a(n) = 3*a(n-1) +4*a(n-2) +6*a(n-4) +4*a(n-5) +4*a(n-6).
G.f.: x^2*(13 - 4*x + 12*x^2 + 4*x^3 + 8*x^4) / (1 - 3*x - 4*x^2 - 6*x^4 - 4*x^5 - 4*x^6). - Colin Barker, Jan 31 2017
EXAMPLE
Some solutions for n=6
..3....3....2....1....4....4....3....3....3....3....4....4....2....2....3....3
..2....3....1....0....3....3....4....2....4....4....3....3....2....3....2....2
..1....0....4....2....4....2....0....3....4....2....4....2....2....4....3....3
..1....1....4....3....2....1....0....1....3....3....0....0....4....4....0....3
..3....2....2....0....3....0....1....1....3....0....0....0....3....4....1....4
..3....1....3....1....2....0....0....0....3....1....0....1....2....4....1....4
PROG
(PARI) concat(0, Vec(x^2*(13 - 4*x + 12*x^2 + 4*x^3 + 8*x^4) / (1 - 3*x - 4*x^2 - 6*x^4 - 4*x^5 - 4*x^6) + O(x^30))) \\ Colin Barker, Jan 31 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Jan 20 2013
STATUS
approved