login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058307
a(n) = (n+1)*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
17
0, 1, 3, 13, 68, 421, 3015, 24541, 223884, 2263381, 25121075, 303716281, 3973432728, 55931774473, 842950049823, 13543132571641, 231076203767720, 4172914800390601, 79516457411189139, 1594502063024173381, 33564059780918830140, 740003817243238436461, 17053651856375402868743
OFFSET
0,3
COMMENTS
Numerator of convergent to BesselI(0,2)/BesselI(1,2) for which the continued fraction expansion is [1,2,3....,n]. - Benoit Cloitre, Mar 27 2003
Numerator of continued fraction C(n) minus denominator of continued fraction C(n), where C(n) = [ 1; 2,3,4,...n ]. - Melvin Peralta, Jan 17 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..445 (terms n=0..100 from T. D. Noe)
Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
C. Cannings, The Stationary Distributions of a Class of Markov Chains, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773.
S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
Russell Walsmith, Cl-Chemy II
FORMULA
From Wouter Meeussen, Feb 02 2001: (Start)
a(2*r+1) = Sum_{j=0..r} (binomial(r+j, r-j)*(r+j)!/(r-j)! - binomial(r + j, r-j-1)*(r+j+1)!/(r-j)!) and
a(2*r) = Sum_{j=0..r} (binomial(r+j+1, r-j)*(r+j+1)!/(r-j)! - binomial(r +j, r-j)*(r+j+1)!/(r-j+1)! + binomial(r+j+1, r-j)*(r+j+1)!/(r-j)!). (End)
E.g.f.: Pi*(BesselI(2, 2)*BesselY(2, 2*I*sqrt(1-x)) - BesselY(2,2*I)*BesselI(2, 2*sqrt(1-x)))/(1-x). Motivated to look into e.g.f.'s for such recurrences by email exchange with Gary Detlefs. One has to use simplifications after differentiation and putting x=0. See Abramowitz-Stegun handbook p. 360, 9.1.16. - Wolfdieter Lang, May 18 2010
Limit n->infinity a(n)/(n+1)! = BesselI(0,2)-BesselI(1,2) = 0.688948447698738204... - Vaclav Kotesovec, Jan 05 2013
a(n) = Sum_{k = 0..floor((n-1)/2)} (n-2*k-1)!*binomial(n-k-1,k)* binomial(n-k+1,k+2). Cf. A058798. - Peter Bala, Aug 01 2013
a(n) = (n+1)!*hypergeometric([1/2-n/2,1-n/2],[3,-1-n,1-n],4)/2 for n >= 2. - Peter Luschny, Sep 10 2014
E.g.f.: 2*(I(2,2)*K(2, 2*sqrt(1-x)) - K(2,2)*I(2, 2*sqrt(1-x)))/(1-x), where I(n, x) and K(n, x) are the modified Bessel functions of the second kind. - G. C. Greubel, Oct 07 2019
MAPLE
A058307 := proc(n) option remember; if n <= 1 then n else A058307(n-2)+(n+1)*A058307(n-1); fi; end;
a:= proc(n) option remember;
if n<2 then n
else (n+1)*a(n-1) + a(n-2)
fi;
end:
seq(a(n), n=0..30); # G. C. Greubel, Oct 07 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n+1)*a[n-1]+a[n-2]}, a, {n, 0, 30}] (* Vincenzo Librandi, May 06 2013 *)
Table[FullSimplify[(-BesselI[2+n, -2] * BesselK[2, 2] + BesselI[2, 2] * BesselK[2+n, 2]) / (BesselI[3, 2] * BesselK[2, 2] + BesselI[2, 2] * BesselK[3, 2])], {n, 0, 20}] (* Vaclav Kotesovec, Feb 14 2014 *)
a[n_]:= a[n]= If[n<2, n, (n+1)*a[n-1] +a[n-2]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2019 *)
PROG
(Magma) [n le 2 select n-1 else Self(n-2)+Self(n-1)*(n): n in [1..30]]; // Vincenzo Librandi, May 06 2013
(Sage)
def A058307(n):
if n < 2: return n
return factorial(n+1)*hypergeometric([1/2-n/2, 1-n/2], [3, -1-n, 1-n], 4)/2
[round(A058307(n).n(100)) for n in (0..21)] # Peter Luschny, Sep 10 2014
(PARI) my(m=30, v=concat([0, 1], vector(m-2))); for(n=3, m, v[n]=n*v[n-1] +v[n-2]); v \\ G. C. Greubel, Nov 24 2018
(Sage)
@CachedFunction
def a(n):
if (n<2): return n
else: return (n+1)*a(n-1) + a(n-2)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 24 2018
(GAP)
a:= function(n)
if n<2 then return n;
else return (n+1)*a(n-1) + a(n-2);
fi;
end;
List([0..30], n-> a(n) ); # G. C. Greubel, Oct 07 2019
CROSSREFS
A column of A058294. Except for first term, -1 times row sums of A053495.
Sequence in context: A376233 A186371 A121954 * A020107 A284718 A284719
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 09 2000
STATUS
approved