|
|
A058798
|
|
a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
|
|
28
|
|
|
0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Note that a(n) = (a(n-1) + a(n+1))/(n+1). - T. D. Noe, Oct 12 2012; corrected by Gary Detlefs, Oct 26 2018
a(n) = log to the base 2 of the n-th term of A073888 = log to the base 3 of the n-th term of A073889.
a(n) equals minus the determinant of M(n+2) where M(n) is the n X n symmetric tridiagonal matrix with entries 1 just above and below its diagonal and diagonal entries 0, 1, 2, .., n-1. Example: M(4)=matrix([[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 2, 1], [0, 0, 1, 3]]). - Roland Bacher, Jun 19 2001
a(n) = A221913(n,-1), n>=1, is the numerator sequence of the n-th approximation of the continued fraction -(0 + K_{k=1)^infty(-1/k)) = 1/(1-1/(2-1/(3-1/(4-... The corresponding denominator sequence is A058797(n). - Wolfdieter Lang, Mar 08 2013
The recurrence equation a(n+1) = (A*n + B)a(n) + C*a(n-1) with the initial conditions a(0) = 0, a(1) = 1 has the solution a(n) = sum {k = 0..floor((n-1)/2)} C^k*binomial(n-k-1,k)*( product {j = 1..n-2k-1} (k+j)*A + B ). This is the case A = 1, B = 1, C = -1. - Peter Bala, Aug 01 2013
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..449
S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
|
|
FORMULA
|
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*binomial(n-k-1,k)*(n-k)!/(k+1)!. - Peter Bala, Aug 01 2013
a(n) = A058797(n+1) + A058799(n-1). - Henry Bottomley, Feb 28 2001
a(n) = Pi*(BesselY(1, 2)*BesselJ(n+1, 2) - BesselJ(1,2)* BesselY(n+1,2)). See the Abramowitz-Stegun reference given under A103921, p. 361 eq. 9.1.27 (first line with Y, J and z=2) and p. 360, eq. 9.1.16 (Wronskian). - Wolfdieter Lang, Mar 05 2013
Limit(a(n)/n!, n -> infinity) = BesselJ(1,2) = 0.576724807756873... See a comment on asymptotics under A084950.
a(n) = n!*hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -4) for n >= 2. - Peter Luschny, Sep 10 2014
|
|
EXAMPLE
|
Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/4 = a(4)/A058797(4). - Wolfdieter Lang, Mar 08 2013
|
|
MATHEMATICA
|
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
nxt[{n_, a_, b_}]:={n+1, b, b*(n+1)-a}; Transpose[NestList[nxt, {1, 0, 1}, 20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
|
|
PROG
|
(Sage)
def A058798(n):
if n < 3: return n
return hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -4)*factorial(n)
[simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
(Magma) [0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
(GAP) a:=[1, 2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
(PARI) m=30; v=concat([1, 2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
|
|
CROSSREFS
|
Column 1 of A007754.
Cf. A073888, A073889, A221913 (alternating row sums).
Other recurrences of this type: A001040, A036242, A036244, A053983, A053984, A053987, A058307, A058308, A058309, A058797, A058799, A075374, A106174, A121323, A121351, A121353, A121354, A222468, A222470.
Similar sequences: A000806, A001053, A007754, A025164, A093986, A159927, A222467, A222469.
Sequence in context: A157312 A175847 A089412 * A122596 A020029 A020119
Adjacent sequences: A058795 A058796 A058797 * A058799 A058800 A058801
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Christian G. Bower, Dec 02 2000
|
|
EXTENSIONS
|
New description from Amarnath Murthy, Aug 17 2002
|
|
STATUS
|
approved
|
|
|
|