login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106174 a(n) = 2*n*a(n-1) - a(n-2), with a(0)=0, a(1)=1. 5
0, 1, 4, 23, 180, 1777, 21144, 294239, 4686680, 84066001, 1676633340, 36801867479, 881568186156, 22883970972577, 639869619046000, 19173204600407423, 612902677593991536, 20819517833595304801, 748889739331836981300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Bessel recurrence at x=1: J(x,n) = (2*n/x)*J(x,n-1) - J(x,n-2).

REFERENCES

Abramowitz and Stegun, Handbook of Mathematical Functions, 9th printing, 1972, page 385.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..403

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.

FORMULA

a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*2^(n-2*k-1)*(n-2*k-1)! * binomial(n-k-1,k)*binomial(n-k,k+1), cf. A058798. - Peter Bala, Aug 01 2013

a(n) = n!*2^(n-1)*hypergeometric2F3([(1-n)/2, 1-n/2],[2, 1-n, -n], -1) for n >= 2. - Peter Luschny, Sep 10 2014

From Vaclav Kotesovec, Jun 10 2019: (Start)

a(n) = Pi*(BesselJ(1 + n, 1)*BesselY(1, 1) - BesselJ(1, 1)*BesselY(1 + n, 1))/2.

a(n) ~ BesselJ(1,1) * 2^n * n!. (End)

MATHEMATICA

F[0]=0; F[1]=1; F[n_]:= F[n]= 2*n*F[n-1]-F[n-2]; Table[F[n], {n, 0, 20}]

RecurrenceTable[{a[0]==0, a[1]==1, a[n]==2n a[n-1]-a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Oct 17 2016 *)

PROG

(Sage)

def A058798(n):

    if n < 2: return n

    return factorial(n)*2^(n-1)*hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -1)

[round(A058798(n).n(164)) for n in (0..18)] # Peter Luschny, Sep 10 2014

(PARI) m=20; v=concat([0, 1], vector(m-2)); for(n=3, m, v[n]=2*(n-1)*v[n-1]-v[n-2]); v \\ G. C. Greubel, Mar 25 2019

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 2*(n-1)*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Mar 25 2019

(GAP) a:=[0, 1];; for n in [3..20] do a[n]:=2*(n-1)*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Mar 25 2019

CROSSREFS

Cf. A058798.

Sequence in context: A220353 A089465 A220214 * A056814 A058863 A192840

Adjacent sequences:  A106171 A106172 A106173 * A106175 A106176 A106177

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Mar 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 00:37 EDT 2021. Contains 345125 sequences. (Running on oeis4.)