login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089465
3rd hyperbinomial transform of A001858; also the hyperbinomial transform of A089462.
3
1, 4, 23, 178, 1763, 21504, 313585, 5342068, 104376201, 2304582544, 56807530871, 1547599725720, 46202052688603, 1500629138909632, 52697989385197137, 1990117967149595824, 80440669725095395025, 3465573101368534916928
OFFSET
0,2
COMMENTS
A001858 enumerates forests of labeled trees with n nodes and shifts 1 place left under the hyperbinomial transform.
LINKS
FORMULA
a(n) = Sum_{k=0..n} 3*(n-k+3)^(n-k-1)*C(n, k)*A001858(k).
a(n) = Sum_{m=0..(n+1)} ( Sum_{j=0..m} C(m, j)*C(n, n-m-j+1)*(n+3)^(n-m-j+1)*(m+j)!/(-2)^j )/m!.
a(n) ~ 3 * exp(7/2) * n^(n-1). - Vaclav Kotesovec, Oct 11 2020
MATHEMATICA
Table[Sum[Sum[Binomial[m, j]*Binomial[n, n - m - j + 1]*(n + 3)^(n - m - j + 1)*(m + j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n + 1}], {n, 0, 50}] (* G. C. Greubel, Nov 18 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, sum(m=0, n+1, sum(j=0, m, binomial(m, j)*binomial(n, n-m-j+1)*(n+3)^(n-m-j+1)*(m+j)!/(-2)^j)/m!))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2003
STATUS
approved