login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A089464
Hyperbinomial transform of A089461. Also the row sums of triangle A089463, which lists the coefficients for the third hyperbinomial transform.
5
1, 4, 22, 163, 1564, 18679, 268714, 4538209, 88188280, 1940666635, 47744244286, 1299383450941, 38777402351476, 1259552677645903, 44247546748659130, 1671904534990870369, 67624237153933934704, 2915628368081840175379, 133499617770334938670198
OFFSET
0,2
COMMENTS
a(n) is also the number of subtrees of the complete graph K_{n+2} which contain 2 fixed adjacent edges (i.e. a fixed K_{1,2}). For n=2, the a(2)=4 solutions are the 4 subtrees of K_4 which contain 2 fixed adjacent edges (i.e. those 2 edges, 1 copy of K_{1,3}, and 2 copies of P_4). - Kellie J. MacPhee, Jul 25 2013
LINKS
FORMULA
a(n) = Sum_{k=0..n} 3*(n-k+3)^(n-k-1)*C(n, k).
E.g.f.: exp(x)*(-LambertW(-x)/x)^3.
a(n) ~ 3*exp(3+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013
MAPLE
a:= n-> add(3*(n-j+3)^(n-j-1)*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
MATHEMATICA
Table[Sum[3(n-k+3)^(n-k-1) Binomial[n, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Dec 04 2011 *)
CoefficientList[Series[E^x*(-LambertW[-x]/x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^3)) \\ G. C. Greubel, Nov 16 2017
CROSSREFS
Cf. A089461, A089463 (triangle).
Column k=3 of A144303.
Sequence in context: A184942 A000779 A053144 * A111343 A302908 A187123
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2003
STATUS
approved