login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089467
Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.
3
1, 2, 8, 52, 478, 5706, 83824, 1461944, 29510268, 676549450, 17361810016, 492999348348, 15345359136232, 519525230896322, 19005788951346240, 747102849650454256, 31404054519248544016, 1405608808807797838866
OFFSET
0,2
COMMENTS
See A088956 for the definition of the hyperbinomial transform.
FORMULA
a(n) = sum(k=0, n, (n-k+1)^(n-k-1)*C(n, k)*A089466(k)). a(n) = sum(k=0, n, -(n-k-1)^(n-k-1)*C(n, k)*A089468(k)). a(n) = sum(m=0, n, sum(j=0, m, C(m, j)*C(n, n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)).
a(n) ~ exp(1/2) * n^n. - Vaclav Kotesovec, Oct 11 2020
MATHEMATICA
Flatten[{1, Table[Sum[Sum[Binomial[m, j] * Binomial[n, n-m-j] * n^(n-m-j) * (m+j)! / (-2)^j / m!, {j, 0, m}], {m, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 11 2020 *)
PROG
(PARI) a(n)=if(n<0, 0, sum(m=0, n, sum(j=0, m, binomial(m, j)*binomial(n, n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2003
STATUS
approved