login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.
3

%I #7 Oct 11 2020 05:01:08

%S 1,2,8,52,478,5706,83824,1461944,29510268,676549450,17361810016,

%T 492999348348,15345359136232,519525230896322,19005788951346240,

%U 747102849650454256,31404054519248544016,1405608808807797838866

%N Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.

%C See A088956 for the definition of the hyperbinomial transform.

%F a(n) = sum(k=0, n, (n-k+1)^(n-k-1)*C(n, k)*A089466(k)). a(n) = sum(k=0, n, -(n-k-1)^(n-k-1)*C(n, k)*A089468(k)). a(n) = sum(m=0, n, sum(j=0, m, C(m, j)*C(n, n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)).

%F a(n) ~ exp(1/2) * n^n. - _Vaclav Kotesovec_, Oct 11 2020

%t Flatten[{1, Table[Sum[Sum[Binomial[m, j] * Binomial[n, n-m-j] * n^(n-m-j) * (m+j)! / (-2)^j / m!, {j,0,m}], {m,0,n}], {n,1,20}]}] (* _Vaclav Kotesovec_, Oct 11 2020 *)

%o (PARI) a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!))

%Y Cf. A089466, A089468, A088956.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 08 2003