OFFSET
0,3
COMMENTS
See A088956 for the definition of the hyperbinomial transform.
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that the functional digraph contains no cycles of length 2. - Geoffrey Critzer, Mar 21 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
FORMULA
A089467(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*a(k).
a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*(n-1)^(n-m-j)*(m+j)!/(-2)^j)/m!.
E.g.f.: exp(-(T(x))^2/2)/(1-T(x)), where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Mar 21 2012
a(n) ~ exp(-1/2) * n^n. - Vaclav Kotesovec, Oct 08 2013
a(n) = n! * Sum_{k=0..floor(n/2)} (-1/2)^k * n^(n - 2*k) / (k! * (n - 2*k)!). - Daniel Suteu, Jun 19 2018
MATHEMATICA
nn=20; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; a=Log[1/(1-t)]; Range[0, nn]! CoefficientList[Series[Exp[a-t^2/2], {x, 0, nn}], x] (* Geoffrey Critzer, Mar 21 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, sum(m=0, n, sum(j=0, m, binomial(m, j)*binomial(n, n-m-j)*(n-1)^(n-m-j)*(m+j)!/(-2)^j)/m!))
(PARI) a(n) = n! * sum(k=0, n\2, (-1/2)^k * n^(n - 2*k) / (k! * (n - 2*k)!)); \\ Daniel Suteu, Jun 19 2018
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Nov 08 2003
STATUS
approved