login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195192
G.f.: A(x) = x + x*ITERATE^2(x + x*ITERATE^3(x + x*ITERATE^4(x + x*ITERATE^5(x + ...)))), where ITERATE^n(F(x)) denotes the n-th iteration of F(x), and the nested iterations continue indefinitely.
4
1, 1, 2, 8, 52, 480, 5811, 87768, 1599189, 34317476, 851848787, 24117965057, 770085965621, 27472955220394, 1086491917437511, 47313129973804599, 2255470786017010440, 117103678748934306726, 6591945250191262271448, 400690880212910627734513, 26204671530683391316131317
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 8*x^4 + 52*x^5 + 480*x^6 + 5811*x^7 +...
where A(x) is generated by nested iterations of shifted series:
A(x) = x + x*B(B(x)), where
B(x) = x + x^2 + 3*x^3 + 18*x^4 + 165*x^5 + 2034*x^6 + 31500*x^7 +...;
B(x) = x + x*C(C(C(x))), where
C(x) = x + x^2 + 4*x^3 + 32*x^4 + 380*x^5 + 5904*x^6 + 112528*x^7 +...;
C(x) = x + x*D(D(D(D(x)))), where
D(x) = x + x^2 + 5*x^3 + 50*x^4 + 730*x^5 + 13720*x^6 + 311730*x^7 +...;
D(x) = x + x*E(E(E(E(E(x))))), where
E(x) = x + x^2 + 6*x^3 + 72*x^4 + 1248*x^5 + 27552*x^6 + 728175*x^7 +...;
E(x) = x + x*F(F(F(F(F(F(x)))))), where
F(x) = x + x^2 + 7*x^3 + 98*x^4 + 1967*x^5 + 49910*x^6 + 1505546*x^7 +...;
F(x) = x + x*G(G(G(G(G(G(G(x))))))), where
G(x) = x + x^2 + 8*x^3 + 128*x^4 + 2920*x^5 + 83744*x^6 + 2840520*x^7 +...;
G(x) = x + x*H(H(H(H(H(H(H(H(x)))))))), where
H(x) = x + x^2 + 9*x^3 + 162*x^4 + 4140*x^5 + 132444*x^6 + 4991148*x^7 +...; ...
PROG
(PARI) /* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* A(x) results from nested iterations of shifted series: */
{a(n)=local(A=x); for(k=0, n, A=ITERATE(n-k+1, x + x*A, n)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A300697 A277499 A089467 * A103239 A375904 A209307
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2011
STATUS
approved