login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195190
Primes p such that there is only one prime number between semiprime(p) and semiprime(p+1).
2
2, 13, 23, 43, 113, 151, 179, 229, 233, 241, 281, 283, 347, 353, 359, 367, 383, 401, 431, 491, 499, 503, 541, 571, 593, 613, 653, 677, 787, 811, 827, 859, 881, 967, 983, 1051, 1093, 1117, 1223, 1237, 1259, 1277, 1279, 1289, 1303, 1409, 1433, 1453, 1471, 1493, 1499, 1511, 1531, 1549, 1607
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=2 because 2 is a prime and semiprime(2)=6<(only one prime 7)<9=semiprime(2+1),
a(2)=13 because 13 is a prime and semiprime(13)=35<(only one prime 37)<38=semiprime(13+1).
PROG
(PARI) list(lim)=my(lm=1.1*lim*log(lim)/log(log(lim)), v=List(), u=List(), t); forprime(p=2, sqrt(lm), t=p; forprime(q=p, lm\t, listput(v, t*q))); v=vecsort(Vec(v)); forprime(p=2, lim, t=0; for(k=v[p]+1, v[p+1]-1, if(isprime(k)&&t++>1, break)); if(t==1, listput(u, p))); v=0; Vec(u) \\ Charles R Greathouse IV, Sep 11 2011
CROSSREFS
Gf. A001358.
Sequence in context: A243617 A045389 A243621 * A215390 A285789 A090528
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Sequence corrected by Charles R Greathouse IV, Sep 11 2011
STATUS
approved