login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195189
Denominators of a sequence leading to gamma = A001620.
14
2, 24, 72, 2880, 800, 362880, 169344, 29030400, 9331200, 4790016000, 8673280, 31384184832000, 6181733376000, 439378587648000, 10346434560000, 512189896458240000, 265423814656, 14148260909088768000, 2076423318208512000, 96342919523794944000000, 74538995631567667200000
OFFSET
0,1
COMMENTS
gamma = 1/2 + 1/24 + 1/72 + 19/2880 + 3/800 + 863/362880 + 275/169344 + ... = (A002206 unsigned=reduced A141417(n+1)/A091137(n+1))/a(n) is an old formula based on Gregory's A002206/A002207.
This formula for Euler's constant was discovered circa 1780-1790 by the Italian mathematicians Gregorio Fontana (1735-1803) and Lorenzo Mascheroni (1750-1800), and was subsequently rediscovered several times (in particular, by Ernst Schröder in 1879, Niels E. Nørlund in 1923, Jan C. Kluyver in 1924, Charles Jordan in 1929, Kenter in 1999, and Victor Kowalenko in 2008). For more details, see references below. - Iaroslav V. Blagouchine, May 03 2015
LINKS
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 and vol. 151, pp. 276-277, 2015. arXiv version.
M. Coffey and J. Sondow, Rebuttal of Kowalenko's paper as concerns the irrationality of Euler's constant, Acta Appl. Math., 121 (2012), 1-3.
J. C. Kluyver, Euler's constant and natural numbers, Proc. Kon. Ned. Akad. Wet., 27(1-2) (1924), 142-144.
FORMULA
a(n) = (n+1) * A002207(n).
EXAMPLE
a(0)=1*2, a(1)=2*12, a(2)=3*24, a(3)=4*720.
MATHEMATICA
g[n_]:=Sum[StirlingS1[n, l]/(l+1), {l, 1, n}]/(n*n!); a[n_]:=Denominator[g[n]]; Table[a[n], {n, 1, 30}] (* Iaroslav V. Blagouchine, May 03 2015 *)
g[n_] := Sum[ BernoulliB[j]/j * StirlingS1[n, j-1], {j, 1, n+1}] / n! ; a[n_] := (n+1)*Denominator[g[n]]; Table[a[n], {n, 0, 20}]
(* or *) max = 20; Denominator[ CoefficientList[ Series[ 1/Log[1 + x] - 1/x, {x, 0, max}], x]]*Range[max+1] (* Jean-François Alcover, Sep 04 2013 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Sep 11 2011
EXTENSIONS
More terms from Jean-François Alcover, Sep 04 2013
STATUS
approved