login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195186
Number of palindromic double occurrence words of length 2n.
1
1, 2, 6, 20, 72, 290, 1198, 5452, 25176, 125874, 637926, 3448708, 18919048, 109412210, 642798510, 3945170012, 24614491704, 159328958690, 1048645656646, 7122719571700, 49185991168968, 349097516604738, 2518145666958126, 18609525157571692, 139704193446510616
OFFSET
1,2
LINKS
Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011.
FORMULA
Theorem 3.3 of Burns-Muche gives a recurrence.
MAPLE
A047974 := proc(n) option remember; if n= 1 then 1; elif n=2 then 3; else procname(n-1)+2*(n-1)*procname(n-2) ; end if; end proc:
A195186 := proc(n) if n <= 1 then 1; else A047974(n)-add(procname(n-2*k)*doublefactorial(2*k-1), k=1..floor(n/2)) ; end if; end proc:
seq(A195186(n), n=1..20) ; # R. J. Mathar, Sep 12 2011
MATHEMATICA
b[n_] := Sum[Binomial[k, n - k]*(n!/k!), {k, 0, n}];
a[1] = 1; a[n_] := b[n] - Sum[a[n - 2*k]*(2*k - 1)!!, {k, 1, n/2}];
Array[a, 20] (* Jean-François Alcover, Nov 29 2017, after R. J. Mathar *)
CROSSREFS
Sequence in context: A154381 A150135 A150136 * A150137 A150138 A148481
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 10 2011
STATUS
approved