The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323843 Number of n-node connected Stanley graphs. 5
 0, 1, 1, 2, 8, 52, 502, 6824, 127166, 3205924, 108975934, 5006366048, 312601245662, 26708244267148, 3142852107059758, 512229404374936616, 116165284523764481294, 36791597841822774872116, 16320947226945992981680606, 10163558457757761048966068912 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS For precise definition see Knuth (1997). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..155 D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997. [Annotated scanned copy, with permission] MAPLE b:= proc(n) option remember; add(mul(       (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)     end: p:= proc(n) option remember;       add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)     end: a:= proc(n) option remember; `if`(n=0, 0, p(n)-add(       binomial(n, j)*p(n-j)*a(j)*j, j=1..n-1)/n)     end: seq(a(n), n=0..21);  # Alois P. Heinz, Sep 24 2019 MATHEMATICA b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}]; p[n_] := p[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}]; a[n_] := a[n] = If[n == 0, 0, p[n] - Sum[Binomial[n, j] p[n-j] a[j] j, {j, n-1}]/n]; a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *) CROSSREFS Cf. A135922, A323841, A323842. Sequence in context: A195192 A103239 A209307 * A132228 A305004 A151879 Adjacent sequences:  A323840 A323841 A323842 * A323844 A323845 A323846 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 04 2019 EXTENSIONS More terms from Alois P. Heinz, Sep 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 07:49 EDT 2021. Contains 346445 sequences. (Running on oeis4.)