login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121353
a(n) = (3*n - 2)*a(n-1) - a(n-2) starting a(0)=0, a(1)=1.
4
0, 1, 4, 27, 266, 3431, 54630, 1034539, 22705228, 566596161, 15841987280, 490535009519, 16662348336366, 616016353436023, 24623991789104554, 1058215630578059799, 48653295014801646200, 2382953240094702604001, 123864915189909733761852, 6810187382204940654297859
OFFSET
0,3
COMMENTS
In the hypergeometric family a(n) = (a0*n+c0)*a(n-1)+b0*a(n-2) we have A053984, A058797, A121323, A121351, and this here with a0=3, where a(n) can be expressed in a characteristic cross-product of Bessel functions.
LINKS
S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
FORMULA
a(n) = (Pi/3) * (BesselJ(1/3+n,2/3) * BesselY(1/3,2/3) - BesselJ(1/3,2/3) * BesselY(1/3+n,2/3)).
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*3^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k-2/3,k+1/3), cf. A058798. - Peter Bala, Aug 01 2013
a(n) ~ n! * BesselJ(1/3, 2/3) * 3^(n-2/3) * n^(-2/3). - Vaclav Kotesovec, Jul 31 2014
a(n) = 3^n*Gamma(n+1/3)*hypergeometric([1/2-n/2, 1-n/2], [4/3, 2/3-n, 1-n], -4/9)/Gamma(1/3) for n >= 2. - Peter Luschny, Sep 10 2014
MATHEMATICA
f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == (3*n - 2)*a[n - 1] - a[n - 2], a[0] == 0, a[1] == 1}, a[n], n][[1]] // FullSimplify] Rationalize[N[Table[f[n], {n, 0, 25}], 100], 0]
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(3n-2)*a[n-1]-a[n-2]}, a, {n, 20}] (* Vaclav Kotesovec, Jul 31 2014 *)
nxt[{n_, a_, b_}]:={n+1, b, b(3n+1)-a}; NestList[nxt, {1, 0, 1}, 20][[;; , 2]] (* Harvey P. Dale, Jun 03 2023 *)
PROG
(Sage)
def A121353(n):
if n < 2: return n
return 3^n*gamma(n+1/3)*hypergeometric([1/2-n/2, 1-n/2], [4/3, 2/3 -n, 1-n], -4/9)/gamma(1/3)
[round(A121353(n).n(100)) for n in (0..19)] # Peter Luschny, Sep 10 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula and Bob Hanlon (hanlonr(AT)cox.net), Sep 05 2006
STATUS
approved