login
A121356
Number of transitive PSL_2(ZZ) actions on a finite dotted and labeled set of size n.
5
1, 2, 24, 192, 600, 15840, 211680, 1612800, 43545600, 961632000, 11416204800, 365957222400, 10766518963200, 191617884057600, 6758061133824000, 254086360399872000, 6058779650187264000, 241382293453357056000
OFFSET
1,2
COMMENTS
"Dotted" means having a distinguished element. - N. J. A. Sloane, Feb 06 2012
Equivalently, the number of different connected, dotted and labeled trivalent diagrams of size n.
FORMULA
a(n) = A121355(n)*n.
If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = z d/dz B(z) (Euler operator).
MAPLE
N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2), t, N+1), polynom), t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3), t, N+1), polynom), t, ascending) : exs23:=sort(add(op(n+1, exs2)*op(n+1, exs3)/(t^n/ n!), n=0..N), t, ascending) : logexs23:=sort(convert(taylor(log(exs23), t, N+1), polynom), t, ascending) : sort(add(op(n, logexs23)*n!*n, n=1..N), t, ascending);
MATHEMATICA
m = 18;
s2 = Exp[t + t^2/2] + O[t]^(m+1) // Normal;
s3 = Exp[t + t^3/3] + O[t]^(m+1) // Normal;
s = Sum[s2[[n+1]] s3[[n+1]]/(t^n/n!), {n, 0, m}];
CoefficientList[Log[s] + O[t]^(m+1), t] Range[0, m]! Range[0, m] // Rest (* Jean-François Alcover, Sep 02 2018, from Maple *)
PROG
(PARI) N=18; x='x+O('x^(N+1));
A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
A121355_ser = serlaplace(log(serconvol(A121357_ser, exp(x))));
Vec(x*A121355_ser') \\ Gheorghe Coserea, May 10 2017
CROSSREFS
Labeled version of A005133.
Labeled and dotted version of A121350.
Dotted version of A121355.
Connected and dotted version of A121357.
Connected, labeled and dotted version of A121352.
Sequence in context: A131972 A059387 A126190 * A052780 A245019 A189769
KEYWORD
nonn
AUTHOR
Samuel A. Vidal, Jul 23 2006
STATUS
approved