OFFSET
1,2
COMMENTS
For n={3,4,5}+4*k, k=0,1,..., a(n)=2. If we omit these terms we get sequence a(2+4*n) = 5, 3, 5, 3, 7, 3, 5, 5, 13, 7, 3, 5, 3, 19, 3, 5, 5, 5, 7, 3, 5, 3, 5, 3, 17, 5, 5, 5, 3, 11, 3, 5, 3, 23, 11, 5, 5, 3, 53, 3, 5, 3, 5, 59, 7, 5, 3, 5, 3, 7, 3, 5, 5, 7, 13, 3, 5, 3, 7, 3, 5, 5, 5, 7, 3, 5, 3, 5, 3, 47, 5, 5, 5, 3; least prime factor of (1 + 4*n)*(2 + 4*n)*(3 + 4*n)/6, n=1,2,... Cf. A000292 Tetrahedral (or pyramidal) numbers: C(n+2,3) = n(n+1)(n+2)/6.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
a(n) = lpf(n(n+1)(n+2)/6), for n >= 2, with a(1) = 1.
MATHEMATICA
FactorInteger[#][[1, 1]]&/@Binomial[Range[2, 110]+2, 3] (* Harvey P. Dale, Dec 07 2016 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 06 2006
EXTENSIONS
Term a(1) = 1 prepended and offset corrected by Antti Karttunen, Jul 22 2018
STATUS
approved