OFFSET
1,3
COMMENTS
Equivalently, the number of different connected labeled trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.
LINKS
S. A. Vidal, Sur la Classification et le Denombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison, (in French), arXiv:math/0702223 [math.CO] 2006.
FORMULA
If A(z) = g.f. of a(n) and B(z) = g.f. of A121357 then A(z) = log(B(z)).
MAPLE
N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2), t, N+1), polynom), t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3), t, N+1), polynom), t, ascending) : exs23:=sort(add(op(n+1, exs2)*op(n+1, exs3)/(t^n/ n!), n=0..N), t, ascending) : logexs23:=sort(convert(taylor(log(exs23), t, N+1), polynom), t, ascending) : sort(add(op(n, logexs23)*n!, n=1..N), t, ascending);
# Alternatively:
A121355_list := proc(len) local s, p; s := f -> seq(n!*coeff(series(f, z, n+1), z, n), n=0..len); p := m -> s(exp(z+z^m/m)); s(log(add((p(2)[n+1]*p(3)[n+1])*z^n/n!, n=0..len))) end: # Peter Luschny, Nov 16 2015
MATHEMATICA
m = 19; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[Log[exs23], {t, 0, m}] // Normal; CoefficientList[logexs23, t]*Range[0, m]! // Rest (* Jean-François Alcover, Sep 06 2013, translated and adapted from Samuel Vidal's Maple program *)
PROG
(PARI) N=20; x='x+O('x^(N+1));
A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
Vec(serlaplace(log(serconvol(A121357_ser, exp(x))))) \\ Gheorghe Coserea, May 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Samuel A. Vidal, Jul 23 2006
STATUS
approved