login
A067239
a(0)=1, a(n) = 8n*(2n-1).
2
1, 8, 48, 120, 224, 360, 528, 728, 960, 1224, 1520, 1848, 2208, 2600, 3024, 3480, 3968, 4488, 5040, 5624, 6240, 6888, 7568, 8280, 9024, 9800, 10608, 11448, 12320, 13224, 14160, 15128, 16128, 17160, 18224, 19320, 20448, 21608, 22800, 24024
OFFSET
0,2
COMMENTS
Engel expansion of cosh(1/2).
Also, 8 times hexagonal numbers (A000384(n)*8 = A152750(n)), for n>0. - Omar E. Pol, Dec 14 2008
FORMULA
a(n) = a(n-1) + 32*n - 24 (with a(1)=8). - Vincenzo Librandi, Dec 15 2010
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: (1 + 5*x + 27*x^2 - x^3)/(1-x)^3. (End)
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +8; AppendTo[lst, s], {n, 0, 8!, 32}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
PROG
(PARI) Vec((1+5*x+27*x^2-x^3)/(1-x)^3+O(x^99)) \\ Charles R Greathouse IV, Apr 13 2012
CROSSREFS
Cf. A006784 for Engel expansion definition.
Sequence in context: A121028 A139279 A250257 * A152750 A121355 A227499
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 03 2002
STATUS
approved